
Ansible	Hands-on	Introduction

Jon	Jozwiak,	Sr.	Cloud	Solutions	Architect

Minneapolis	RHUG	-	April	13,	2017

What	is	Ansible?
It's	a	simple	automation	language	that	can	perfectly	describe
an	IT	application	infrastructure	in	Ansible	Playbooks.

It's	an	automation	engine	that	runs	Ansible	Playbooks.

Ansible	Tower	is	an	enterprise	framework	for	controlling,
securing	and	managing	your	Ansible	automation	with	a	UI	and
RESTful	API.

Ansible	Is...

Community
THE	MOST	POPULAR	OPEN-SOURCE	AUTOMATION	COMMUNITY	ON	GITHUB

13,000+	stars	&	4,000+	forks	on	GitHub
2000+	GitHub	Contributors
Over	900	modules	shipped	with	Ansible
New	contributors	added	every	day
1200+	users	on	IRC	channel
Top	10	open	source	projects	in	2014
World-wide	meetups	taking	place	every	week
Ansible	Galaxy:	over	18,000	subscribers
250,000+	downloads	a	month
AnsibleFests	in	NYC,	SF,	London

http://ansible.com/community

Installing	Ansible

#	Install	with	yum	(Example	RHEL	7)
$	wget	http://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-release-7-9.noarch.rpm
$	yum	localinstall	epel-release-7-9.noarch.rpm
$	yum	--enablerepo=epel	install	ansible

#	Install	using	pip
$	pip	install	ansible

										

How	Ansible	Works

Modules
Modules	are	bits	of	code	transferred	to	the	target	system	and
executed	to	satisfy	the	task	declaration.	Ansible	ships	with
several	hundred	today!

apt/yum
copy
file
get_url
git
ping
debug
service
synchronize
template

Modules	Documentation
http://docs.ansible.com/

Modules	Documentation

#	List	out	all	modules	installed
$	ansible-doc	-l
...
copy
cron
...

#	Read	documentation	for	installed	module
$	ansible-doc	copy
>	COPY

		The	[copy]	module	copies	a	file	on	the	local	box	to	remote	locations.	Use	the	[fetch]	module	to	copy	files	from	remote	locations	to	the	local
		box.	If	you	need	variable	interpolation	in	copied	files,	use	the	[template]	module.

		*	note:	This	module	has	a	corresponding	action	plugin.

Options	(=	is	mandatory):
...
										

Modules:	Run	Commands
If	Ansible	doesn’t	have	a	module	that	suits	your	needs	there	are	the	“run
command”	modules:

command:	Takes	the	command	and	executes	it	on	the	host.	The	most
secure	and	predictable.
shell:	Executes	through	a	shell	like	/bin/sh	so	you	can	use	pipes	etc.	Be
careful.
script:	Runs	a	local	script	on	a	remote	node	after	transferring	it.
raw:	Executes	a	command	without	going	through	the	Ansible	module
subsystem.

NOTE:	Unlike	standard	modules,	run	commands	have	no	concept	of	desired
state	and	should	only	be	used	as	a	last	resort.

Inventory
Inventory	is	a	collection	of	hosts	(nodes)	with	associated	data	and	groupings
that	Ansible	can	connect	and	manage.

Hosts	(nodes)
Groups
Inventory-specific	data	(variables)
Static	or	dynamic	sources

Static	Inventory	Example

10.42.0.2
10.42.0.6
10.42.0.7
10.42.0.8
10.42.0.100
host.example.com
										

Static	Inventory	Example

[control]
control	ansible_host=10.42.0.2

[web]
node-[1:3]	ansible_host=10.42.0.[6:8]

[haproxy]
haproxy	ansible_host=10.42.0.100

[all:vars]
ansible_user=vagrant
ansible_ssh_private_key_file=~/.vagrant.d/insecure_private_key
										

Ad-Hoc	Commands
An	ad-hoc	command	is	a	single	Ansible	task	to	perform	quickly,	but	don’t	want
to	save	for	later.

#	check	all	my	inventory	hosts	are	ready	to	be
#	managed	by	Ansible
$	ansible	all	-m	ping

#	collect	and	display	the	discovered	facts
#	for	the	localhost
$	ansible	localhost	-m	setup

#	run	the	uptime	command	on	all	hosts	in	the
#	web	group
$	ansible	web	-m	command	-a	"uptime"
										

Sidebar:	Discovered	Facts
Facts	are	bits	of	information	derived	from	examining	a	host	systems	that	are
stored	as	variables	for	later	use	in	a	play.

$	ansible	localhost	-m	setup
localhost	|	success	>>	{
		"ansible_facts":	{
						"ansible_default_ipv4":	{
										"address":	"192.168.1.37",
										"alias":	"wlan0",
										"gateway":	"192.168.1.1",
										"interface":	"wlan0",
										"macaddress":	"c4:85:08:3b:a9:16",
										"mtu":	1500,
										"netmask":	"255.255.255.0",
										"network":	"192.168.1.0",
										"type":	"ether"
						},
										

Lab	#	1:	
Ad-Hoc	Commands

Variables
Ansible	can	work	with	metadata	from	various	sources	and	manage	their	context
in	the	form	of	variables.

Command	line	parameters
Plays	and	tasks
Files
Inventory
Discovered	facts
Roles

Tasks
Tasks	are	the	application	of	a	module	to	perform	a	specific	unit	of	work.

file:	A	directory	should	exist
yum:	A	package	should	be	installed
service:	A	service	should	be	running
template:	Render	a	configuration	file	from	a	template
get_url:	Fetch	an	archive	file	from	a	URL
git:	Clone	a	source	code	repository

Example	Tasks	in	a	Play

tasks:
-	name:	httpd	package	is	present
		yum:
				name:	httpd
				state:	latest

-	name:	latest	index.html	file	is	present
		copy:
				src:	files/index.html
				dest:	/var/www/html/

-	name:	restart	httpd
		service:
				name:	httpd
				state:	restarted
										

Handler	Tasks
Handlers	are	special	tasks	that	run	at	the	end	of	a	play	if	notified	by	another
task	when	a	change	occurs.

If	a	configuration	file	gets	changed	notify	a	service
restart	task	that	it	needs	to	run.

Example	Handler	Task	in	a	Play

tasks:
-	name:	httpd	package	is	present
		yum:
				name:	httpd
				state:	latest
		notify:	restart	httpd

-	name:	latest	index.html	file	is	present
		copy:
				src:	files/index.html
				dest:	/var/www/html/

handlers:
-	name:	restart	httpd
		service:
				name:	httpd
				state:	restarted
										

Plays	&	Playbooks
Plays	are	ordered	sets	of	tasks	to	execute	against	host	selections	from	your
inventory.	A	playbook	is	a	file	containing	one	or	more	plays.

Playbook	Example

-	name:	install	and	start	apache
		hosts:	web
		become:	yes
		vars:
				http_port:	80

		tasks:
		-	name:	httpd	package	is	present
				yum:
						name:	httpd
						state:	latest

		-	name:	latest	index.html	file	is	present
				copy:
						src:	files/index.html
						dest:	/var/www/html/

		-	name:	httpd	is	started
				service:
						name:	httpd
						state:	started
										

Human-Meaningful	Naming

	-	name:	install	and	start	apache
			hosts:	web
			become:	yes
			vars:
					http_port:	80

			tasks:
			-	name:	httpd	package	is	present
					yum:
							name:	httpd
							state:	latest

			-	name:	latest	index.html	file	is	present
					copy:
							src:	files/index.html
							dest:	/var/www/html/

			-	name:	httpd	is	started
					service:
								name:	httpd
								state:	started
										

Host	Selector

-	name:	install	and	start	apache
		hosts:	web
		become:	yes
		vars:
				http_port:	80

		tasks:
		-	name:	httpd	package	is	present
				yum:
						name:	httpd
						state:	latest

		-	name:	latest	index.html	file	is	present
				copy:
						src:	files/index.html
						dest:	/var/www/html/

		-	name:	httpd	is	started
				service:
						name:	httpd
						state:	started
										

Privilege	Escalation

-	name:	install	and	start	apache
		hosts:	web
		become:	yes
		vars:
				http_port:	80

		tasks:
		-	name:	httpd	package	is	present
				yum:
						name:	httpd
						state:	latest

		-	name:	latest	index.html	file	is	present
				copy:
						src:	files/index.html
						dest:	/var/www/html/

		-	name:	httpd	is	started
				service:
						name:	httpd
						state:	started
										

Play	Variables

-	name:	install	and	start	apache
		hosts:	web
		become:	yes
		vars:
				http_port:	80

		tasks:
		-	name:	httpd	package	is	present
				yum:
						name:	httpd
						state:	latest

		-	name:	latest	index.html	file	is	present
				copy:
						src:	files/index.html
						dest:	/var/www/html/

		-	name:	httpd	is	started
				service:
						name:	httpd
						state:	started
										

Tasks

-	name:	install	and	start	apache
		hosts:	web
		become:	yes
		vars:
				http_port:	80

		tasks:
		-	name:	latest	httpd	package	is	present
				yum:
						name:	httpd
						state:	latest

		-	name:	latest	index.html	file	is	present
				copy:
						src:	files/index.html
						dest:	/var/www/html/

		-	name:	httpd	is	started
				service:
						name:	httpd
						state:	started
										

Lab	#	2:	
A	Simple	Playbook

Doing	More	with	Playbooks
Here	are	some	more	essential	playbook	features	that	you	can	apply:

Templates
Loops
Conditionals
Tags
Blocks

Templates
Ansible	embeds	the	 	that	can	be	used	to	dynamically:

Set	and	modify	play	variables
Conditional	logic
Generate	files	such	as	configurations	from	variables

Jinja2	templating	engine

http://jinja.pocoo.org/docs/

Loops
Loops	can	do	one	task	on	multiple	things,	such	as	create	a	lot	of	users,	install	a
lot	of	packages,	or	repeat	a	polling	step	until	a	certain	result	is	reached.

-	yum:
				name:	"{{	item	}}"
				state:	latest
		with_items:
		-	httpd
		-	mod_wsgi
												

Conditionals
Ansible	supports	the	conditional	execution	of	a	task	based	on	the	run-time
evaluation	of	variable,	fact,	or	previous	task	result.

-	yum:
				name:	httpd
				state:	latest
		when:	ansible_os_family	==	"RedHat"
												

Tags
Tags	are	useful	to	be	able	to	run	a	subset	of	a	playbook	on-demand.

-	yum:
				name:	"{{	item	}}"
				state:	latest
		with_items:
		-	httpd
		-	mod_wsgi
		tags:
					-	packages

	-	template:
					src:	templates/httpd.conf.j2
					dest:	/etc/httpd/conf/httpd.conf
		tags:
					-	configuration
												

Blocks
Blocks	cut	down	on	repetitive	task	directives,	allow	for	logical	grouping	of	tasks
and	even	in	play	error	handling.

-	block:
		-	yum:
						name:	"{{	item	}}"
						state:	latest
				with_items:
				-	httpd
				-	mod_wsgi

		-	template:
						src:	templates/httpd.conf.j2
						dest:	/etc/httpd/conf/httpd.conf
		when:	ansible_os_family	==	"RedHat"
												

Roles
Roles	are	a	packages	of	closely	related	Ansible	content	that	can	be	shared	more
easily	than	plays	alone.

Improves	readability	and	maintainability	of	complex	plays
Eases	sharing,	reuse	and	standardization	of	automation	processes
Enables	Ansible	content	to	exist	independently	of	playbooks,	projects	--
even	organizations
Provides	functional	conveniences	such	as	file	path	resolution	and	default
values

Project	with	Embedded	Roles	Example

site.yml
roles/
			common/
					files/
					templates/
					tasks/
					handlers/
					vars/
					defaults/
					meta/
			apache/
					files/
					templates/
					tasks/
					handlers/
					vars/
					defaults/
					meta/
										

Project	with	Embedded	Roles	Example

#	site.yml

-	hosts:	web
		roles:
					-	common
					-	apache
										

Ansible	Galaxy
http://galaxy.ansible.com

Ansible	Galaxy	is	a	hub	for	finding,	reusing	and	sharing	Ansible	content.

Jump-start	your	automation	project	with	content	contributed	and	reviewed	by
the	Ansible	community.

Lab	#3:	
A	Playbook	Using	Roles

Lab	#4:	
Using	an	Ansible	Galaxy	Role

Next	Steps
It's	easy	to	get	started
ansible.com/get-started
Join	the	Ansible	community
ansible.com/community
Would	you	like	to	learn	a	lot	more?
redhat.com/en/services/training/do407-automation-ansible

