ANSIBLE

by Red Hat"

Ansible Hands-on Introduction

Jon Jozwiak, Sr. Cloud Solutions Architect

Minneapolis RHUG - April 13, 2017

What is Ansible?

It's a simple automation language that can perfectly describe
an IT application infrastructure in Ansible Playbooks.

It's an automation engine that runs Ansible Playbooks. @

Ansible Tower is an enterprise framework for controlling,
securing and managing your Ansible automation with a Ul and

RESTful API.

Ansible Is...

SIMPLE

Human readable automation
No special coding skills needed

Tasks executed in order

Get productive quickly

M\
\ &

POWERFUL

App deployment
Configuration management

Workflow orchestration

Orchestrate the app lifecycle

AGENTLESS

Agentless architecture
Uses OpenSSH & WinRM
No agents to exploit or update

More efficient & more secure

Community

THE MOST POPULAR OPEN-SOURCE AUTOMATION COMMUNITY ON GITHUB

e 13,000+ stars & 4,000+ forks on GitHub
e 2000+ GitHub Contributors

e Over 900 modules shipped with Ansible
e New contributors added every day

e 1200+ users on IRC channel

e Top 10 open source projects in 2014

e World-wide meetups taking place every week
e Ansible Galaxy: over 18,000 subscribers

e 250,000+ downloads a month

e AnsibleFests in NYC, SF, London

http://ansible.com/community

Ml

Installing Ansible

Install with yum (Example RHEL 7)

$ wget http://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-release-7-9.noarch.rpm
$ yum localinstall epel-release-7-9.noarch.rpm

$ yum

Install using pip
$ pip install ansible

How Ansible Works

PUBLIC / PRIVATE
CLOUD

L ANSIBLE'S AUTOMATION ENGINE

ANSIBLE PLAYBOOK

i
|
|
|
|
|
|
— |
|
|

| I
|
|

4 INVENTORY API ! HosTs
|
|
|
|
|
|
|
> : NETWORKING

MODULES PLUGINS |
:
|
|
|
!

Modules

Modules are bits of code transferred to the target system and
executed to satisfty the task declaration. Ansible ships with
several hundred today!

® apt/yum

® Copy
e file

e get_url

® git

® ping

e debug

® service

e synchronize

e toarmnlata

Modules Documentation

http://docs.ansible.com/

Module Index

All Modules
Cloud Modules

service - Manage services.

Clustering Modules - s

Commands Modules : Ep;:pl
Crypto Modules o Support
Database Modules Synopsis

Files Modules

. Options
Identity Modules
parameter required default choices
I nve nto ry M Od u Ies arguments |no Additional arguments provided on the command line
Messagl ng Modules aliases: args
enabled no e yes Whether the service should start on boot. At least one of state and enabled are required.
Monitoring Modules ‘o
Network Modules name yes Name of the service.
pattern no If the service does not respond to the status command, name a substring to look for as
H H would be found in the output of the pscommand as a stand-in for a status result. If the
N Ot I ﬁ Cat ion M Od u Ies string is found, the service will be assumed to be running.
. runlevel no default For OpenRC init scripts (ex: Gentoo) only. The runlevel that this service belongs to.
Packaging Modules T _
sleep no If the service is being restarted thensleep this many seconds between the stop and start
(addedin 1.3) command. This helps to workaround badly behaving init scripts that exit immediately
Re m Ote M a n age m e nt M Od U |eS after signaling a process to stop.
state no e started started / stopped are idempotent actions that will not run commands unless necessary.
Sou rce Control MOdU Ies + stopped | restarted will always bounce the service. reloaded will always reload. At least one of
. < ried state and enabled are required. Note that reloaded will start the service if it is not
[€Sid already started, even if your chosen init system wouldn't normally.
Storage Modules + reloaded
Syste m M Od u Ies use no auto The service module actually uses system specific modules, normally through auto
(addedin2.2) detection, this setting can force a specific module.
sreLe Normally it uses the value of the 'ansible_service_mgr' fact and falls back to the old
Ut | I | t 1es M Od u I es ‘service' module when none matching is found.

Web Infrastructure Modules
Windows Modules

« Controls services on remote hosts, Supported init systems include BSD init, OpenRC, SysV, Solaris SMF, systemd, upstart.

Modules Documentation

List out all modules installed
$ ansible-doc -

copy

cron

Read documentation for installed module
$ ansible-doc copy
> COPY

The [copy] module copies a file on the local box to remote locations. Use the [fetch] module to copy files from remote locations to the local
box. If you need variable interpolation in copied files, use the [template] module.

* note: This module has a corresponding action plugin.

Options (= is mandatory):

Modules: Run Commands

If Ansible doesn’t have a module that suits your needs there are the “run
command” modules:

e command: Takes the command and executes it on the host. The most
secure and predictable.

e shell: Executes through a shell like /bin/sh so you can use pipes etc. Be @
careful.

e script: Runs a local script on a remote node after transferring it.

e raw. Executes a command without going through the Ansible module
subsystem.

NOTE: Unlike standard modules, run commands have no concept of desired
state and should only be used as a last resort.

Inventory

Inventory is a collection of hosts (nodes) with associated data and groupings
that Ansible can connect and manage. @

e Hosts (nodes)

e (Groups
¢ |nventory-specific data (variables)
e Static or dynamic sources

Static Inventory Example

10.42.0.2
10.42.0.6
10.42.0.7
10.42.0.8
10.42.0.100

host.example.com

Static Inventory Example

[control]
control ansible host=10.42.0.2

[web]
node-[1:3] ansible_host=10.42.0.[6:8]

[haproxy]
haproxy ansible_host=10.42.0.100

[all:vars]
ansible user=vagrant
ansible_ssh_private key file=~/.vagrant.d/insecure_private key

Ad-Hoc Commands

An ad-hoc command is a single Ansible task to perform quickly, but don't want
to save for later.

check all my inventory hosts are ready to be
managed by Ansible
$ ansible all -m ping

collect and display the discovered facts
for the localhost
$ ansible localhost -m setup

run the uptime command on all hosts in the
web group
$ ansible web -m command -a "uptime"

Sidebar: Discovered Facts

Facts are bits of information derived from examining a host systems that are
stored as variables for later use in a play.

$ ansible localhost -m setup
localhost | success >> {
"ansible_facts": {

"ansible default_ipv4": {
"address": "192.168.1.37",
"alias": "wlan0",
"gateway": "192.168.1.1",

"Interface": "wlan0",

"macaddress": "c4:85:08:3b:a9:16",
"mtu": 1500,

"netmask": "255.255.255.0",
"network": "192.168.1.0",

"type": "ether"

Lab # 1:
Ad-Hoc Commands

Variables

Ansible can work with metadata from various sources and manage their context
in the form of variables.

¢ Command line parameters @
e Plays and tasks

o Files

® [nventory

e Discovered facts
e Roles

Tasks

Tasks are the application of a module to perform a specific unit of work.

e file: A directory should exist

e yum: A package should be installed @
e service: A service should be running

e template: Render a configuration file from a template
e get_url: Fetch an archive file from a URL

e git: Clone a source code repository

Example Tasks in a Play

tasks:

- name: httpd package is present
yum:

name: httpd

state: latest

- name: latest index.html file is present

copy:
src: files/index.html
dest: /var/www/html/

- name: restart httpd
service:
name: httpd
state: restarted

Handler Tasks

Handlers are special tasks that run at the end of a play if notified by another
task when a change occurs. @

If a configuration file gets changed notity a service
restart task that it needs to run.

Example Handler Task in a Play

tasks:

- name: httpd package is present
yum:

name: httpd

state: latest

: restart httpd

- name: latest index.html file is present
copy:
src: files/index.html
dest: /var/www/html/

- name: restart httpd
service:

name: httpd
state: restarted

Plays & Playbooks

Plays are ordered sets of tasks to execute against host selections from your @
inventory. A playbook is a file containing one or more plays.

Playbook Example

- name: install and start apache
hosts: web
become: yes
vars:
http_port: 80

tasks:

- name: httpd package is present
yum:

name: httpd

state: latest

- name: latest index.html file is present

copy:
src: files/index.html
dest: /var/www/html/

Human-Meaningful Naming

Jname: apache

hosts: web
become: yes
vars:
http_port: 80

tasks:
:
yum:
name: httpd
state: latest

- - latest .html

copy:
src: files/index.html

dest: /var/www/html/

Host Selector

- name: install and start apache
hosts: web
become: yes
vars:
http_port: 80

tasks:

- name: httpd package is present
yum:

name: httpd

state: latest

- name: latest index.html file is present

copy:
src: files/index.html
dest: /var/www/html/

Privilege Escalation

- name: install and start apache
hosts: web
vars:
http_port: 80

tasks:

- name: httpd package is present
yum:

name: httpd

state: latest

- name: latest index.html file is present
copy:
src: files/index.html
dest: /var/www/html/

Play Variables

- name: install and start apache
hosts: web
become: yes

vars:
http_port: 80

tasks:

- name: httpd package is present
yum:

name: httpd

state: latest

- name: latest index.html file is present
copy:
src: files/index.html
dest: /var/www/html/

Tasks

- name: install and start apache
hosts: web
become: yes
vars:
http_port: 80

tasks:

- name: latest httpd package is present

dest: /var/www/html

Lab # 2:
A Simple Playbook

Doing More with Playbooks

Here are some more essential playbook features that you can apply:

e Templates e
® | oops

e Conditionals

® [ags
e Blocks

Templates

Ansible embeds the Jinja2 templating engine that can be used to dynamically: @

e Set and modify play variables

e Conditional logic
e Generate files such as configurations from variables

http://jinja.pocoo.org/docs/

Loops

Loops can do one task on multiple things, such as create a lot of users, install a
lot of packages, or repeat a polling step until a certain result is reached.

- yum:
pElEH"{{ item }}"
state: latest

with_items:
- httpd
- mod_wsgi

Conditionals

Ansible supports the conditional execution of a task based on the run-time
evaluation of variable, fact, or previous task result. A

- yum:
name: httpd

state: latest

Tags

Tags are useful to be able to run a subset of a playbook on-demand.

- yum:

name: "{{ item }}"
state: latest
with_items:
S qliiele
- mod_wsgi
tags:
- packages

- template:
src: templates/httpd.conf.j2
dest: /etc/httpd/conf/httpd.conf

tags:

- configuration

Blocks

Blocks cut down on repetitive task directives, allow for logical grouping of tasks
and even in play error handling.

Sblock:

- yum:
name: "{{ item }}"
state: latest

with_items:
- httpd

- mod_wsgi

- template:

src: templates/httpd.conf.j2

dest: /etc/httpd/conf/httpd.conf
when: ansible_os_family == "RedHat"

Roles

Roles are a packages of closely related Ansible content that can be shared more
easily than plays alone.
e Improves readability and maintainability of complex plays

e Eases sharing, reuse and standardization of automation processes @
e Enables Ansible content to exist independently of playbooks, projects --
even organizations

e Provides functional conveniences such as file path resolution and default
values

Project with Embedded Roles Example

site.ym|
roles/
common/
files/
templates/
tasks/
handlers/
vars/
defaults/
meta/
apache/
files/
templates/
tasks/
handlers/
vars/
defaults/

Project with Embedded Roles Example

- hosts: web
roles:
- common

- apache

Ansible Galaxy

http://galaxy.ansible.com

Ansible Galaxy is a hub for finding, reusing and sharing Ansible content. @

Jump-start your automation project with content contributed and reviewed by
the Ansible community.

Lab #3:
A Playbook Using Roles

Lab #4:
Using an Ansible Galaxy Role

Next Steps

e |t's easy to get started
ansible.com/get-started

e Join the Ansible community
ansible.com/community

e Would you like to learn a lot more?
redhat.com/en/services/training/do407-automation-ansible

