
Chapter 13: Low-Level Input/Output 322

13 Low-Level Input/Output

This chapter describes functions for performing low-level input/output operations on file de-
scriptors. These functions include the primitives for the higher-level I/O functions described
in Chapter 12 [Input/Output on Streams], page 247, as well as functions for performing
low-level control operations for which there are no equivalents on streams.

Stream-level I/O is more flexible and usually more convenient; therefore, programmers
generally use the descriptor-level functions only when necessary. These are some of the
usual reasons:

• For reading binary files in large chunks.

• For reading an entire file into core before parsing it.

• To perform operations other than data transfer, which can only be done with a de-
scriptor. (You can use fileno to get the descriptor corresponding to a stream.)

• To pass descriptors to a child process. (The child can create its own stream to use a
descriptor that it inherits, but cannot inherit a stream directly.)

13.1 Opening and Closing Files

This section describes the primitives for opening and closing files using file descriptors. The
open and creat functions are declared in the header file fcntl.h, while close is declared
in unistd.h.

[Function]int open (const char *filename, int flags[, mode t mode])
Preliminary: | MT-Safe | AS-Safe | AC-Safe fd | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

The open function creates and returns a new file descriptor for the file named by
filename. Initially, the file position indicator for the file is at the beginning of the
file. The argument mode (see Section 14.9.5 [The Mode Bits for Access Permission],
page 407) is used only when a file is created, but it doesn’t hurt to supply the argument
in any case.

The flags argument controls how the file is to be opened. This is a bit mask; you create
the value by the bitwise OR of the appropriate parameters (using the ‘|’ operator in
C). See Section 13.14 [File Status Flags], page 362, for the parameters available.

The normal return value from open is a non-negative integer file descriptor. In the
case of an error, a value of −1 is returned instead. In addition to the usual file name
errors (see Section 11.2.3 [File Name Errors], page 245), the following errno error
conditions are defined for this function:

EACCES The file exists but is not readable/writable as requested by the flags
argument, the file does not exist and the directory is unwritable so it
cannot be created.

EEXIST Both O_CREAT and O_EXCL are set, and the named file already exists.

EINTR The open operation was interrupted by a signal. See Section 24.5 [Prim-
itives Interrupted by Signals], page 685.

EISDIR The flags argument specified write access, and the file is a directory.

Chapter 13: Low-Level Input/Output 323

EMFILE The process has too many files open. The maximum number of file
descriptors is controlled by the RLIMIT_NOFILE resource limit; see
Section 22.2 [Limiting Resource Usage], page 630.

ENFILE The entire system, or perhaps the file system which contains the directory,
cannot support any additional open files at the moment. (This problem
cannot happen on GNU/Hurd systems.)

ENOENT The named file does not exist, and O_CREAT is not specified.

ENOSPC The directory or file system that would contain the new file cannot be
extended, because there is no disk space left.

ENXIO O_NONBLOCK and O_WRONLY are both set in the flags argument, the
file named by filename is a FIFO (see Chapter 15 [Pipes and FIFOs],
page 422), and no process has the file open for reading.

EROFS The file resides on a read-only file system and any of O_WRONLY, O_RDWR,
and O_TRUNC are set in the flags argument, or O_CREAT is set and the file
does not already exist.

If on a 32 bit machine the sources are translated with _FILE_OFFSET_BITS == 64 the
function open returns a file descriptor opened in the large file mode which enables
the file handling functions to use files up to 263 bytes in size and offset from −263
to 263. This happens transparently for the user since all of the lowlevel file handling
functions are equally replaced.

This function is a cancellation point in multi-threaded programs. This is a problem
if the thread allocates some resources (like memory, file descriptors, semaphores or
whatever) at the time open is called. If the thread gets canceled these resources stay
allocated until the program ends. To avoid this calls to open should be protected
using cancellation handlers.

The open function is the underlying primitive for the fopen and freopen functions,
that create streams.

[Function]int open64 (const char *filename, int flags[, mode t mode])
Preliminary: | MT-Safe | AS-Safe | AC-Safe fd | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

This function is similar to open. It returns a file descriptor which can be used to
access the file named by filename. The only difference is that on 32 bit systems the
file is opened in the large file mode. I.e., file length and file offsets can exceed 31 bits.

When the sources are translated with _FILE_OFFSET_BITS == 64 this function is ac-
tually available under the name open. I.e., the new, extended API using 64 bit file
sizes and offsets transparently replaces the old API.

[Obsolete function]int creat (const char *filename, mode t mode)
Preliminary: | MT-Safe | AS-Safe | AC-Safe fd | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

This function is obsolete. The call:
creat (filename, mode)

is equivalent to:

Chapter 13: Low-Level Input/Output 324

open (filename, O_WRONLY | O_CREAT | O_TRUNC, mode)

If on a 32 bit machine the sources are translated with _FILE_OFFSET_BITS == 64 the
function creat returns a file descriptor opened in the large file mode which enables
the file handling functions to use files up to 263 in size and offset from −263 to 263.
This happens transparently for the user since all of the lowlevel file handling functions
are equally replaced.

[Obsolete function]int creat64 (const char *filename, mode t mode)
Preliminary: | MT-Safe | AS-Safe | AC-Safe fd | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

This function is similar to creat. It returns a file descriptor which can be used to
access the file named by filename. The only the difference is that on 32 bit systems
the file is opened in the large file mode. I.e., file length and file offsets can exceed 31
bits.

To use this file descriptor one must not use the normal operations but instead the
counterparts named *64, e.g., read64.

When the sources are translated with _FILE_OFFSET_BITS == 64 this function is ac-
tually available under the name open. I.e., the new, extended API using 64 bit file
sizes and offsets transparently replaces the old API.

[Function]int close (int filedes)
Preliminary: | MT-Safe | AS-Safe | AC-Safe fd | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

The function close closes the file descriptor filedes. Closing a file has the following
consequences:

• The file descriptor is deallocated.

• Any record locks owned by the process on the file are unlocked.

• When all file descriptors associated with a pipe or FIFO have been closed, any
unread data is discarded.

This function is a cancellation point in multi-threaded programs. This is a problem
if the thread allocates some resources (like memory, file descriptors, semaphores or
whatever) at the time close is called. If the thread gets canceled these resources stay
allocated until the program ends. To avoid this, calls to close should be protected
using cancellation handlers.

The normal return value from close is 0; a value of −1 is returned in case of failure.
The following errno error conditions are defined for this function:

EBADF The filedes argument is not a valid file descriptor.

EINTR The close call was interrupted by a signal. See Section 24.5 [Primitives
Interrupted by Signals], page 685. Here is an example of how to handle
EINTR properly:

TEMP_FAILURE_RETRY (close (desc));

Chapter 13: Low-Level Input/Output 325

ENOSPC

EIO

EDQUOT When the file is accessed by NFS, these errors from write can some-
times not be detected until close. See Section 13.2 [Input and Output
Primitives], page 325, for details on their meaning.

Please note that there is no separate close64 function. This is not necessary since
this function does not determine nor depend on the mode of the file. The kernel which
performs the close operation knows which mode the descriptor is used for and can
handle this situation.

To close a stream, call fclose (see Section 12.4 [Closing Streams], page 252) instead of
trying to close its underlying file descriptor with close. This flushes any buffered output
and updates the stream object to indicate that it is closed.

13.2 Input and Output Primitives

This section describes the functions for performing primitive input and output operations
on file descriptors: read, write, and lseek. These functions are declared in the header file
unistd.h.

[Data Type]ssize_t
This data type is used to represent the sizes of blocks that can be read or written in
a single operation. It is similar to size_t, but must be a signed type.

[Function]ssize_t read (int filedes, void *buffer, size t size)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

The read function reads up to size bytes from the file with descriptor filedes, storing
the results in the buffer. (This is not necessarily a character string, and no terminating
null character is added.)

The return value is the number of bytes actually read. This might be less than size;
for example, if there aren’t that many bytes left in the file or if there aren’t that many
bytes immediately available. The exact behavior depends on what kind of file it is.
Note that reading less than size bytes is not an error.

A value of zero indicates end-of-file (except if the value of the size argument is also
zero). This is not considered an error. If you keep calling read while at end-of-file, it
will keep returning zero and doing nothing else.

If read returns at least one character, there is no way you can tell whether end-of-file
was reached. But if you did reach the end, the next read will return zero.

In case of an error, read returns −1. The following errno error conditions are defined
for this function:

EAGAIN Normally, when no input is immediately available, read waits for some
input. But if the O_NONBLOCK flag is set for the file (see Section 13.14
[File Status Flags], page 362), read returns immediately without reading
any data, and reports this error.

Chapter 13: Low-Level Input/Output 326

Compatibility Note: Most versions of BSD Unix use a different error code
for this: EWOULDBLOCK. In the GNU C Library, EWOULDBLOCK is an alias
for EAGAIN, so it doesn’t matter which name you use.

On some systems, reading a large amount of data from a character special
file can also fail with EAGAIN if the kernel cannot find enough physical
memory to lock down the user’s pages. This is limited to devices that
transfer with direct memory access into the user’s memory, which means
it does not include terminals, since they always use separate buffers inside
the kernel. This problem never happens on GNU/Hurd systems.

Any condition that could result in EAGAIN can instead result in a success-
ful read which returns fewer bytes than requested. Calling read again
immediately would result in EAGAIN.

EBADF The filedes argument is not a valid file descriptor, or is not open for
reading.

EINTR read was interrupted by a signal while it was waiting for input. See
Section 24.5 [Primitives Interrupted by Signals], page 685. A signal will
not necessary cause read to return EINTR; it may instead result in a
successful read which returns fewer bytes than requested.

EIO For many devices, and for disk files, this error code indicates a hardware
error.

EIO also occurs when a background process tries to read from the control-
ling terminal, and the normal action of stopping the process by sending
it a SIGTTIN signal isn’t working. This might happen if the signal is
being blocked or ignored, or because the process group is orphaned. See
Chapter 28 [Job Control], page 761, for more information about job con-
trol, and Chapter 24 [Signal Handling], page 659, for information about
signals.

EINVAL In some systems, when reading from a character or block device, position
and size offsets must be aligned to a particular block size. This error
indicates that the offsets were not properly aligned.

Please note that there is no function named read64. This is not necessary since this
function does not directly modify or handle the possibly wide file offset. Since the
kernel handles this state internally, the read function can be used for all cases.

This function is a cancellation point in multi-threaded programs. This is a problem
if the thread allocates some resources (like memory, file descriptors, semaphores or
whatever) at the time read is called. If the thread gets canceled these resources stay
allocated until the program ends. To avoid this, calls to read should be protected
using cancellation handlers.

The read function is the underlying primitive for all of the functions that read from
streams, such as fgetc.

[Function]ssize_t pread (int filedes, void *buffer, size t size, off t offset)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

Chapter 13: Low-Level Input/Output 327

The pread function is similar to the read function. The first three arguments are
identical, and the return values and error codes also correspond.

The difference is the fourth argument and its handling. The data block is not read
from the current position of the file descriptor filedes. Instead the data is read
from the file starting at position offset. The position of the file descriptor itself is not
affected by the operation. The value is the same as before the call.

When the source file is compiled with _FILE_OFFSET_BITS == 64 the pread function
is in fact pread64 and the type off_t has 64 bits, which makes it possible to handle
files up to 263 bytes in length.

The return value of pread describes the number of bytes read. In the error case it
returns −1 like read does and the error codes are also the same, with these additions:

EINVAL The value given for offset is negative and therefore illegal.

ESPIPE The file descriptor filedes is associate with a pipe or a FIFO and this
device does not allow positioning of the file pointer.

The function is an extension defined in the Unix Single Specification version 2.

[Function]ssize_t pread64 (int filedes, void *buffer, size t size, off64 t
offset)

Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

This function is similar to the pread function. The difference is that the offset
parameter is of type off64_t instead of off_t which makes it possible on 32 bit
machines to address files larger than 231 bytes and up to 263 bytes. The file descriptor
filedes must be opened using open64 since otherwise the large offsets possible with
off64_t will lead to errors with a descriptor in small file mode.

When the source file is compiled with _FILE_OFFSET_BITS == 64 on a 32 bit machine
this function is actually available under the name pread and so transparently replaces
the 32 bit interface.

[Function]ssize_t write (int filedes, const void *buffer, size t size)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

The write function writes up to size bytes from buffer to the file with descriptor
filedes. The data in buffer is not necessarily a character string and a null character
is output like any other character.

The return value is the number of bytes actually written. This may be size, but can
always be smaller. Your program should always call write in a loop, iterating until
all the data is written.

Once write returns, the data is enqueued to be written and can be read back right
away, but it is not necessarily written out to permanent storage immediately. You can
use fsync when you need to be sure your data has been permanently stored before
continuing. (It is more efficient for the system to batch up consecutive writes and
do them all at once when convenient. Normally they will always be written to disk
within a minute or less.) Modern systems provide another function fdatasync which

Chapter 13: Low-Level Input/Output 328

guarantees integrity only for the file data and is therefore faster. You can use the
O_FSYNC open mode to make write always store the data to disk before returning;
see Section 13.14.3 [I/O Operating Modes], page 365.

In the case of an error, write returns −1. The following errno error conditions are
defined for this function:

EAGAIN Normally, write blocks until the write operation is complete. But if the
O_NONBLOCK flag is set for the file (see Section 13.11 [Control Operations
on Files], page 358), it returns immediately without writing any data
and reports this error. An example of a situation that might cause the
process to block on output is writing to a terminal device that supports
flow control, where output has been suspended by receipt of a STOP
character.

Compatibility Note: Most versions of BSD Unix use a different error code
for this: EWOULDBLOCK. In the GNU C Library, EWOULDBLOCK is an alias
for EAGAIN, so it doesn’t matter which name you use.

On some systems, writing a large amount of data from a character special
file can also fail with EAGAIN if the kernel cannot find enough physical
memory to lock down the user’s pages. This is limited to devices that
transfer with direct memory access into the user’s memory, which means
it does not include terminals, since they always use separate buffers inside
the kernel. This problem does not arise on GNU/Hurd systems.

EBADF The filedes argument is not a valid file descriptor, or is not open for
writing.

EFBIG The size of the file would become larger than the implementation can
support.

EINTR The write operation was interrupted by a signal while it was blocked
waiting for completion. A signal will not necessarily cause write to return
EINTR; it may instead result in a successful write which writes fewer bytes
than requested. See Section 24.5 [Primitives Interrupted by Signals],
page 685.

EIO For many devices, and for disk files, this error code indicates a hardware
error.

ENOSPC The device containing the file is full.

EPIPE This error is returned when you try to write to a pipe or FIFO that isn’t
open for reading by any process. When this happens, a SIGPIPE signal
is also sent to the process; see Chapter 24 [Signal Handling], page 659.

EINVAL In some systems, when writing to a character or block device, position
and size offsets must be aligned to a particular block size. This error
indicates that the offsets were not properly aligned.

Unless you have arranged to prevent EINTR failures, you should check errno after
each failing call to write, and if the error was EINTR, you should simply repeat the
call. See Section 24.5 [Primitives Interrupted by Signals], page 685. The easy way to
do this is with the macro TEMP_FAILURE_RETRY, as follows:

Chapter 13: Low-Level Input/Output 329

nbytes = TEMP_FAILURE_RETRY (write (desc, buffer, count));

Please note that there is no function named write64. This is not necessary since this
function does not directly modify or handle the possibly wide file offset. Since the
kernel handles this state internally the write function can be used for all cases.

This function is a cancellation point in multi-threaded programs. This is a problem
if the thread allocates some resources (like memory, file descriptors, semaphores or
whatever) at the time write is called. If the thread gets canceled these resources stay
allocated until the program ends. To avoid this, calls to write should be protected
using cancellation handlers.

The write function is the underlying primitive for all of the functions that write to
streams, such as fputc.

[Function]ssize_t pwrite (int filedes, const void *buffer, size t size, off t
offset)

Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

The pwrite function is similar to the write function. The first three arguments are
identical, and the return values and error codes also correspond.

The difference is the fourth argument and its handling. The data block is not written
to the current position of the file descriptor filedes. Instead the data is written
to the file starting at position offset. The position of the file descriptor itself is not
affected by the operation. The value is the same as before the call.

When the source file is compiled with _FILE_OFFSET_BITS == 64 the pwrite function
is in fact pwrite64 and the type off_t has 64 bits, which makes it possible to handle
files up to 263 bytes in length.

The return value of pwrite describes the number of written bytes. In the error case it
returns −1 like write does and the error codes are also the same, with these additions:

EINVAL The value given for offset is negative and therefore illegal.

ESPIPE The file descriptor filedes is associated with a pipe or a FIFO and this
device does not allow positioning of the file pointer.

The function is an extension defined in the Unix Single Specification version 2.

[Function]ssize_t pwrite64 (int filedes, const void *buffer, size t size,
off64 t offset)

Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

This function is similar to the pwrite function. The difference is that the offset
parameter is of type off64_t instead of off_t which makes it possible on 32 bit
machines to address files larger than 231 bytes and up to 263 bytes. The file descriptor
filedes must be opened using open64 since otherwise the large offsets possible with
off64_t will lead to errors with a descriptor in small file mode.

When the source file is compiled using _FILE_OFFSET_BITS == 64 on a 32 bit ma-
chine this function is actually available under the name pwrite and so transparently
replaces the 32 bit interface.

Chapter 13: Low-Level Input/Output 330

13.3 Setting the File Position of a Descriptor

Just as you can set the file position of a stream with fseek, you can set the file position of
a descriptor with lseek. This specifies the position in the file for the next read or write
operation. See Section 12.18 [File Positioning], page 304, for more information on the file
position and what it means.

To read the current file position value from a descriptor, use lseek (desc, 0, SEEK_

CUR).

[Function]off_t lseek (int filedes, off t offset, int whence)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

The lseek function is used to change the file position of the file with descriptor filedes.

The whence argument specifies how the offset should be interpreted, in the same way
as for the fseek function, and it must be one of the symbolic constants SEEK_SET,
SEEK_CUR, or SEEK_END.

SEEK_SET Specifies that offset is a count of characters from the beginning of the file.

SEEK_CUR Specifies that offset is a count of characters from the current file position.
This count may be positive or negative.

SEEK_END Specifies that offset is a count of characters from the end of the file. A
negative count specifies a position within the current extent of the file;
a positive count specifies a position past the current end. If you set the
position past the current end, and actually write data, you will extend
the file with zeros up to that position.

The return value from lseek is normally the resulting file position, measured in bytes
from the beginning of the file. You can use this feature together with SEEK_CUR to
read the current file position.

If you want to append to the file, setting the file position to the current end of file
with SEEK_END is not sufficient. Another process may write more data after you seek
but before you write, extending the file so the position you write onto clobbers their
data. Instead, use the O_APPEND operating mode; see Section 13.14.3 [I/O Operating
Modes], page 365.

You can set the file position past the current end of the file. This does not by itself
make the file longer; lseek never changes the file. But subsequent output at that
position will extend the file. Characters between the previous end of file and the new
position are filled with zeros. Extending the file in this way can create a “hole”: the
blocks of zeros are not actually allocated on disk, so the file takes up less space than
it appears to; it is then called a “sparse file”.

If the file position cannot be changed, or the operation is in some way invalid, lseek
returns a value of −1. The following errno error conditions are defined for this
function:

EBADF The filedes is not a valid file descriptor.

EINVAL The whence argument value is not valid, or the resulting file offset is not
valid. A file offset is invalid.

Chapter 13: Low-Level Input/Output 331

ESPIPE The filedes corresponds to an object that cannot be positioned, such as
a pipe, FIFO or terminal device. (POSIX.1 specifies this error only for
pipes and FIFOs, but on GNU systems, you always get ESPIPE if the
object is not seekable.)

When the source file is compiled with _FILE_OFFSET_BITS == 64 the lseek function
is in fact lseek64 and the type off_t has 64 bits which makes it possible to handle
files up to 263 bytes in length.

This function is a cancellation point in multi-threaded programs. This is a problem
if the thread allocates some resources (like memory, file descriptors, semaphores or
whatever) at the time lseek is called. If the thread gets canceled these resources stay
allocated until the program ends. To avoid this calls to lseek should be protected
using cancellation handlers.

The lseek function is the underlying primitive for the fseek, fseeko, ftell, ftello
and rewind functions, which operate on streams instead of file descriptors.

[Function]off64_t lseek64 (int filedes, off64 t offset, int whence)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

This function is similar to the lseek function. The difference is that the offset
parameter is of type off64_t instead of off_t which makes it possible on 32 bit
machines to address files larger than 231 bytes and up to 263 bytes. The file descriptor
filedes must be opened using open64 since otherwise the large offsets possible with
off64_t will lead to errors with a descriptor in small file mode.

When the source file is compiled with _FILE_OFFSET_BITS == 64 on a 32 bits machine
this function is actually available under the name lseek and so transparently replaces
the 32 bit interface.

You can have multiple descriptors for the same file if you open the file more than once,
or if you duplicate a descriptor with dup. Descriptors that come from separate calls to open

have independent file positions; using lseek on one descriptor has no effect on the other.
For example,

{

int d1, d2;

char buf[4];

d1 = open ("foo", O_RDONLY);

d2 = open ("foo", O_RDONLY);

lseek (d1, 1024, SEEK_SET);

read (d2, buf, 4);

}

will read the first four characters of the file foo. (The error-checking code necessary for a
real program has been omitted here for brevity.)

By contrast, descriptors made by duplication share a common file position with the
original descriptor that was duplicated. Anything which alters the file position of one of the
duplicates, including reading or writing data, affects all of them alike. Thus, for example,

{

int d1, d2, d3;

char buf1[4], buf2[4];

d1 = open ("foo", O_RDONLY);

Chapter 13: Low-Level Input/Output 332

d2 = dup (d1);

d3 = dup (d2);

lseek (d3, 1024, SEEK_SET);

read (d1, buf1, 4);

read (d2, buf2, 4);

}

will read four characters starting with the 1024’th character of foo, and then four more
characters starting with the 1028’th character.

[Data Type]off_t
This is a signed integer type used to represent file sizes. In the GNU C Library, this
type is no narrower than int.

If the source is compiled with _FILE_OFFSET_BITS == 64 this type is transparently
replaced by off64_t.

[Data Type]off64_t
This type is used similar to off_t. The difference is that even on 32 bit machines,
where the off_t type would have 32 bits, off64_t has 64 bits and so is able to
address files up to 263 bytes in length.

When compiling with _FILE_OFFSET_BITS == 64 this type is available under the name
off_t.

These aliases for the ‘SEEK_...’ constants exist for the sake of compatibility with older
BSD systems. They are defined in two different header files: fcntl.h and sys/file.h.

L_SET An alias for SEEK_SET.

L_INCR An alias for SEEK_CUR.

L_XTND An alias for SEEK_END.

13.4 Descriptors and Streams

Given an open file descriptor, you can create a stream for it with the fdopen function.
You can get the underlying file descriptor for an existing stream with the fileno function.
These functions are declared in the header file stdio.h.

[Function]FILE * fdopen (int filedes, const char *opentype)
Preliminary: | MT-Safe | AS-Unsafe heap lock | AC-Unsafe mem lock | See
Section 1.2.2.1 [POSIX Safety Concepts], page 2.

The fdopen function returns a new stream for the file descriptor filedes.

The opentype argument is interpreted in the same way as for the fopen function (see
Section 12.3 [Opening Streams], page 248), except that the ‘b’ option is not permitted;
this is because GNU systems make no distinction between text and binary files. Also,
"w" and "w+" do not cause truncation of the file; these have an effect only when
opening a file, and in this case the file has already been opened. You must make sure
that the opentype argument matches the actual mode of the open file descriptor.

The return value is the new stream. If the stream cannot be created (for example, if
the modes for the file indicated by the file descriptor do not permit the access specified
by the opentype argument), a null pointer is returned instead.

