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5.1 INTRODUCTION
In Chapter 2 we discussed the five main elements of a protocol definition: a service
specification, explicit assumptions about the environment, the protocol vocabulary,
format definitions, and procedure rules. Most of these elements can be structured in a
hierarchical manner. The service specification, for instance, can be divided into
layers, each new layer building upon the ones below it and providing a higher-level
service to the user. To realize the service at a given layer, a consistent set of pro-
cedure rules must be derived and described in some formal language. The design of a
complete and consistent set of procedure rules, however, is one of the hardest prob-
lems in protocol design.

A PROTOCOL VALIDATION LANGUAGE
In this chapter we introduce a notation for the specification and verification of pro-
cedure rules. Since the focus is on the procedure rules, these specifications provide
only a partial description of a protocol. We call such a partial description a protocol
validation model. The language we use to describe validation models is called
PROMELA.

Our aim is to model protocols as succinctly as possible in order to be able to study
their structure and to verify their completeness and logical consistency. Doing so, we
deliberately abstract from other issues of protocol design, such as message format. A
validation model defines the interactions of processes in a distributed system. It does
not resolve implementation details. It does not say how a message is to be transmit-
ted, encoded, or stored. By simplifying the problem in this way we can isolate and
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concentrate on the hardest part: the design of a complete and consistent set of rules to
govern the interactions in a distributed system.

This chapter gives an introduction to the use of PROMELA for specifying system
behavior in formal validation models. The next chapter discusses specific methods
for defining the precise correctness criteria that can be applied to the validation of
these models. A brief reference manual to PROMELA can be found in Appendix C.
Chapter 7 gives an example of a serious application of PROMELA in the design of a file
transfer protocol. Chapter 12 discusses the design of an interpreter/simulator for the
language, and Chapter 13 discusses how this software can be extended with an
automated analyzer for PROMELA models.

5.2 PROCESSES, CHANNELS, VARIABLES
We describe procedure rules as formal programs for an abstract model of a distributed
system. Of course, we want this model to be as simple as possible, yet sufficiently
powerful to represent all types of coordination problems that can occur in distributed
systems. As far as descriptive power is concerned, it would suffice to define just one
type of object: the finite state machine. The state machine can model all other objects
that we may be interested in, including finite variables and message channels
(bounded FIFO queues). Though such a model may be sufficient, it is not very con-
venient to work with. We therefore define validation models directly in terms of three
specific types of objects:

processes
message channels
state variables

For the purpose of analysis, each of these objects may be translated into a finite state
machine by a simple translation process that is considered in Chapter 8. For now,
however, we can pretend to have the luxury of working directly with these higher-
level objects. All processes are by definition global objects. Variables and channels
represent data that can be either global or local to a process.

5.3 EXECUTABILITY OF STATEMENTS
In PROMELA there is no difference between conditions and statements. Even isolated
boolean conditions can be used as statements. The execution of a statement is condi-
tional on its executability. All PROMELA statements are either executable or blocked,
depending on the current values of variables or the contents of message channels.
Executability is the basic means of synchronization. A process can wait for an event
to happen by waiting for a statement to become executable. For instance, instead of
writing a busy wait loop:

while (a != b) skip /* wait for a == b */

we can achieve the same effect in PROMELA with the statement
(a == b)

The condition can only be executed (passed) if it holds. If the condition does not
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hold, execution blocks until it does. Arithmetic and boolean operators in conditions
such as these are the same as in C. As we will see below, assignments to variables are
always executable.

5.4 VARIABLES AND DATA TYPES
Variables in PROMELA are used to store either global information about the system as
a whole or information that is local to one specific process, depending on where the
declaration for the variable is placed. A variable can be one of the following six
predefined data types:

bit, bool, byte, short, int, chan.

The first five types in this list are called the basic data types. They are used to specify
objects that can hold a single value at a time. The sixth type specifies message chan-
nels. A message channel is an object that can store a number of values, grouped in
user-defined structures. We discuss the basic data types first. Message channels are
discussed separately in Section 5.6.

The declarations
bool flag;
int state;
byte msg;

define variables that can store integer values in three different ranges. The scope of
the variable is global if it is declared outside all process declarations, and local if it is
declared within a process declaration. Table 5.1 summarizes the basic data types,
sizes, and the corresponding value ranges on DEC/VAX computers.

Table 5.1 — Basic Data Types
_ ____________________________________________ ___________________________________________
Name Size (bits) Usage Range_ ___________________________________________
bit 1 unsigned 0..1
bool 1 unsigned 0..1
byte 8 unsigned 0..255
short 16 signed − 215..215 − 1
int 32 signed − 231..231 − 1_ ___________________________________________

The names bit and bool are synonyms for a single bit of information. A byte is an
unsigned quantity that can store a value between 0 and 255. shorts and ints are
signed quantities that differ only in the range of values they can hold.

ARRAYS
Variables can be declared as arrays. For instance,

byte state[N]

declares an array of N bytes that can be accessed in statements such as
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state[0] = state[3] + 5 * state[3*2/n]

where n is a constant or a variable declared elsewhere. The index to an array can be
any expression that determines a unique integer value. The valid range of indexes is 0
.. N-1. The effect of the use of an index value outside that range is undefined; most
likely it will cause a runtime error.

So far we have seen examples of a variable declaration and of two basic types of
statements: boolean conditions and assignments. Declarations and assignments are
always executable.

5.5 PROCESS TYPES
To execute a process we have to be able to name it, define its type, and instantiate it.
Let us first look at the definition and naming of processes. All types of processes that
can be instantiated are defined in proctype declarations. The following, for
instance, declares a process with one local variable named state.

proctype A() { byte state; state = 3 }

The process type is named A. The body of the declaration, enclosed in parentheses,
consists of local variable or channel declarations and statements. The declaration
above contains one local variable declaration and a single statement: an assignment of
the value 3 to variable state.

The semicolon is a statement separator (not a statement terminator, hence there is no
semicolon after the last statement). PROMELA defines two different statement separa-
tors: an arrow, ->, and a semicolon, ;. The two separators are equivalent. The arrow
is sometimes used as an informal way to indicate a causal relation between two state-
ments. Consider the following example.

byte state = 2;

proctype A() { (state == 1) -> state = 3 }

proctype B() { state = state – 1 }

In this example we declared two process types, A and B. Variable state is now a glo-
bal, initialized to the value 2. Process type A contains two statements, separated by an
arrow. Process type declaration B contains a single statement that decrements the
value of the state variable by 1. Since the assignment is always executable, processes
of type B can always terminate without delay. Processes of type A, however, are
delayed until the variable state contains the proper value.

THE INITIAL PROCESS
A proctype definition only declares process behavior, it does not execute it. Ini-
tially, just one process is executed: a process of type init which must be declared
explicitly in every PROMELA specification. The init process is comparable to the
function main() of a standard C program. The smallest possible PROMELA
specification is
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init { skip }

where skip is a null statement. Only slightly more complicated is the PROMELA
equivalent of the famous ‘‘hello world’’ program from C:

init { printf("hello world\n") }

More interestingly, however, the initial process can initialize global variables, create
message channels, and instantiate processes. An init declaration for the two-process
system in Section 5.5, for instance, might look as follows.

init { run A(); run B() }

This init process starts two processes, which will run concurrently with the init
process from then on. In the above case, the init process terminates after starting
the second process, but it need not do so. Run is a unary operator that instantiates a
copy of a given process type (for example, A). It does not wait for the process to ter-
minate. The run statement is executable and returns a positive result only if the pro-
cess can effectively be instantiated. It is unexecutable and returns zero if this cannot
be done, for instance if too many processes are already running. Since PROMELA
models finite state systems, the number of processes and message channels is always
bounded. The precise value of the bound is hardware-dependent and therefore
undefined in PROMELA. The value returned by run is a run-time process number, or
pid. Because run is defined as an operator, run A() is an expression that can be
embedded in other expressions. It would therefore be valid, though perhaps not too
useful, to use it in a composite expression such as

i = run A() && (run B() || run C())

Since communication between processes is defined on named channels, the process
numbers (pids) are usually irrelevant. There is one important exception that we dis-
cuss in Chapter 6, Section 6.7.

The run operator can pass parameter values to the new process, for instance as fol-
lows:

proctype A(byte state; short set)
{ (state == 1) -> state = set
}
init { run A(1, 3) }

Only message channels, discussed later, and instances of the five basic data types can
be passed as parameters. Arrays and process types cannot be passed.

Run can be used in any process to spawn new processes, not just in the initial process.
An executing process disappears when it terminates (i.e., reaches the end of the body
of its process type declaration), but not before all the processes that it has instantiated
(its ‘‘children’’) have terminated first.

Going back to the earlier example, note that using run we can create any number of
copies of the process types A and B. If, however, more than one concurrent process is
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allowed both to read and write the value of a global variable a well-known set of
problems can result (see Bibliographic Notes). Consider, for instance, the following
system of two processes, sharing access to the global variable state.

byte state = 1;

proctype A() { (state == 1) -> state = state + 1 }

proctype B() { (state == 1) -> state = state – 1 }

init { run A(); run B() }

If one of the two processes terminates before its competitor has started, the other pro-
cess will block forever on the initial condition. If both pass the condition simultane-
ously, both can terminate, but the resulting value of state is unpredictable. It can be
0, 1, or 2.

Many solutions to this problem have been considered, ranging from the abolition of
global variables to the provision of special machine instructions that can guarantee an
indivisible test-and-set sequence on a shared variable. The example below was one of
the first solutions published. It is due to the Dutch mathematician T. Dekker. It
grants two processes mutually exclusive access to an arbitrary critical section in their
code by manipulating three global state variables. The first four lines in the PROMELA
specification below are C-style macro definitions. The first two macros define true
to be a constant value equal to 1 and false to be a constant 0. Similarly, Aturn and
Bturn are defined as boolean constants.

1 #define true 1
2 #define false 0
3 #define Aturn 1
4 #define Bturn 0
5
6 bool x, y, t;
7
8 proctype A()
9 { x = true;

10 t = Bturn;
11 (y == false || t == Aturn);
12 /* critical section */
13 x = false
14 }
15 proctype B()
16 { y = true;
17 t = Aturn;
18 (x == false || t == Bturn);
19 /* critical section */
20 y = false
21 }
22 init { run A(); run B() }

The conditions on lines 11 and 18 are used to synchronize the processes. They can
only be executed if they hold. The algorithm can be executed repeatedly and is
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independent of the relative speeds of the two processes.

ATOMIC SEQUENCES
In PROMELA there is another way to avoid the test-and-set problem: atomic
sequences. A sequence of statements enclosed in parentheses prefixed with the key-
word atomic indicates that the sequence is to be executed as one indivisible unit,
non-interleaved with any other processes. It is an error if any statement, other than
the first one, can block in an atomic sequence. The executing process will abort in
that case. Here is the earlier example, rewritten with two atomic sequences.

byte state = 1;
proctype A() { atomic { (state == 1) -> state = state + 1 } }
proctype B() { atomic { (state == 1) -> state = state – 1 } }
init { run A(); run B() }

In this case the final value of state is either 0 or 2, depending on which process exe-
cutes. The other process will be blocked forever.

Atomic sequences can be an important tool in reducing the complexity of a validation
model. An atomic sequence restricts the amount of interleaving that is allowed which
can effectively render complex validation models tractable, without loss of generality.
The example below illustrates this.

proctype nr(short pid, a, b)
{ int res;

atomic { res = (a*a+b)/2*a;
printf("result %d: %d\n", pid, res)

}
}
init { run nr(1,1,1); run nr(1,2,2); run nr(1,3,2) }

The init process starts up three copies of the process type nr. Each process com-
putes some number and prints it. The manipulations of the variables within these
processes are all local and cannot affect the behavior of the other processes. Defining
the body of the process as an atomic sequence dramatically reduces the number of
cases that would need to be considered in a validation (Chapter 11), without changing
the possible behaviors of the processes in any way. It is usually trivial to identify
statement sequences that can be rewritten with atomic sequences.

5.6 MESSAGE CHANNELS
Message channels are used to model the transfer of data from one process to another.
They are declared either locally or globally, just like variables of the basic data types,
using the keyword chan. For instance,

chan a, b; chan c[3]

declares the names a, b, and c as channel identifiers, the last one as an array. A chan-
nel declaration can have an initializer field as well:
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chan a = [16] of { short }

initializes channel a. The initializer says that the channel can store up to 16 messages
of type short. Similarly,

chan c[3] = [4] of { byte }

initializes an array of 3 channels, each with a capacity of 4 message slots, each slot
consisting of one message field of type byte.

If the messages to be passed by the channel have more than one field, the declaration
looks as follows:

chan qname = [16] of { byte, int, chan, byte }

This time, we have defined a single channel that can store up to 16 messages, each
consisting of 4 fields: an 8-bit value, a 32-bit value, a channel name, and another 8-bit
value.

The statement
qname!expr

sends the value of expression expr to the channel we just created, that is, it appends
the value to the tail of the channel.

qname?msg

retrieves a message from the head of the channel, and stores it in the variable msg.
Channels pass messages in first-in first-out order. In the above cases, only a single
value is passed through the channel. If multiple values are transferred per message,
they are specified in a comma-separated list

qname!expr1,expr2,expr3
qname?var1,var2,var3

If more parameters are sent per message than the message channel can store, the
redundant parameters are lost. If fewer parameters are sent then the message channel
can store, the value of the remaining parameters is undefined. Similarly, if the receive
operation tries to retrieve more parameters than are available, the value of the extra
parameters is undefined; if it receives fewer than the number of parameters that was
sent, the extra information is lost.

By convention, the first message field is often used to specify the message type (a
constant). An alternative and equivalent notation for the send and receive operations
is therefore to specify the message type, followed by a list of message fields enclosed
in parentheses. In general:

qname!expr1(expr2,expr3)
qname?var1(var2,var3)

The send operation is executable only when the channel addressed is not full. The
receive operation, similarly, is only executable when the channel is non-empty.
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Optionally, some of the arguments in the receive operation can be constants:
qname?cons1,var2,cons2

In this case, a further condition on the executability of the receive operation is that the
value of all message fields that are specified as constants match the value of the
corresponding fields in the message that is at the head of the channel.

Here is an example that uses some of the mechanisms introduced so far.
proctype A(chan q1)
{ chan q2;

q1?q2;
q2!123

}
proctype B(chan qforb)
{ int x;

qforb?x;
printf("x = %d\n", x)

}
init
{ chan qname[2] = [1] of { chan };

chan qforb = [1] of { int };
run A(qname[0]);
run B(qforb);
qname[0]!qforb

}

Note that channel qforb is not declared as an array and therefore it does not need an
index in the send operation at the end of the initial process. The value printed by the
process of type B will be 123.

A predefined unary operator len(qname) takes the name of a channel qname as an
operand and returns the number of messages that it currently holds. Note that if len
is used as a condition, rather than on the right side of an assignment, it is unexecut-
able if the channel is empty: it returns a zero result, which by definition means that the
statement is temporarily unexecutable.

Send and receive operations cannot be evaluated without potential side-effects. Com-
posite conditions such as

(qname?var == 0)

or
(a > b && qname!123)

are therefore invalid in PROMELA. For the receive operation, however, there is an
alternative notation, using square brackets around the clause behind the question
mark. For instance,

qname?[ack,var]

is evaluated as a condition and can be combined with other boolean expressions. It
returns a positive result (1) if the corresponding receive statement
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qname?ack,var

would be executable, i.e., if there is indeed a message ack at the head of the channel.
It returns zero otherwise. It has no side-effect; specifically, it does not remove the
message from the channel.

Note carefully that in non-atomic sequences of two statements such as
(len(qname) > 0) -> qname?msgtype

or
qname?[msgtype] -> qname?msgtype

the second statement is not necessarily executable after the first one has been exe-
cuted. There may be race conditions if access to the channels is shared between
several processes. In both cases, a second process can steal the message just after the
current one determined its presence. PROMELA does not, and indeed cannot, prevent
the user from writing these specifications. On the contrary, these are precisely the
types of problems we want to model in our validation language.

RENDEZVOUS COMMUNICATION
So far we have talked about asynchronous communication between processes via
message channels created in statements such as

chan qname = [N] of { byte }

where N is a positive constant that defines the buffer size. Using a channel size of
zero, as in

chan port = [0] of { byte }

defines a rendezvous port that can only pass, and not store, single-byte messages.
Message interactions via such rendezvous ports are synchronous, by definition. Con-
sider the following example:

#define msgtype 33

chan name = [0] of { byte, byte };

byte name;

proctype A()
{ name!msgtype(124);

name!msgtype(121)
}
proctype B()
{ byte state;

name?msgtype(state)
}
init
{ atomic { run A(); run B() }
}
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The two run statements are placed in an atomic sequence to enforce that the two
processes start simultaneously. Of course, they need not terminate simultaneously,
and they need not have run to completion before the atomic sequence terminates.
Channel name is a global rendezvous port. The two processes synchronously execute
their first statement: a handshake on message msgtype and a transfer of the value 124
to local variable state. The second statement in process A is unexecutable, because
there is no matching receive operation in process B.

If the channel name is defined with a non-zero buffer capacity, the behavior is dif-
ferent. If the buffer size is at least two, the process of type A can complete its execu-
tion before its peer even starts. If the buffer size is one, the sequence of events is as
follows. The process of type A can complete its first send action, but it blocks on the
second, because the channel is now filled to capacity. The process of type B can then
retrieve the first message and terminate. At this point, A becomes executable again
and terminates, leaving its last message as a residual in the channel.

Synchronous ports can be declared as arrays, just like asynchronous channels. Ren-
dezvous communication is binary: only two processes, a sender and a receiver, can be
synchronized in this way. We will see an example of a way to exploit this to build a
semaphore below. But first, let us introduce a few more control flow structures.

5.7 CONTROL FLOW
Between the lines, we have already introduced three ways of defining control flow:
concatenation of statements within a process, parallel execution of processes, and
atomic sequences. There are three other control flow constructs in PROMELA to be
discussed:

Case selection
Repetition
Unconditional jumps

CASE SELECTION
The simplest construct is the selection structure. Using the relative values of two
variables a and b to choose between two options, for instance, we can write

if
:: (a != b) -> option1
:: (a == b) -> option2
fi

The selection structure contains two execution sequences, each preceded by a double
colon. Only one sequence from the list is executed. A sequence can be selected only
if its first statement is executable. The first statement is therefore called a guard.

In the example above the guards are mutually exclusive, but they need not be. If more
than one guard is executable, one of the corresponding sequences is selected at ran-
dom. If all guards are unexecutable, the process blocks until at least one of them can
be selected. There is no restriction on the type of statement that can be used as a
guard. The following example uses input statements:
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#define a 1
#define b 2

chan ch = [1] of { byte };

proctype A() { ch!a }
proctype B() { ch!b }
proctype C()
{ if

:: ch?a
:: ch?b
fi

}
init { atomic { run A(); run B(); run C() } }

This example defines three processes and one channel. The first option in the selec-
tion structure of the process of type C is executable if the channel contains a message
a, where a is a constant with value 1, as defined in a macro definition at the start of
the program. The second option is executable if it contains a message b, where b is a
constant. Which message will be available depends on the relative speeds of the
processes.
A process of the following type either increments or decrements the value of variable
count once.

byte count;

proctype counter()
{ if

:: count = count + 1
:: count = count – 1
fi

}

REPETITION
A logical extension of the selection structure is the repetition structure. We can
modify the above program to obtain a cyclic program that randomly increments or
decrements the variable.

byte count;

proctype counter()
{ do

:: count = count + 1
:: count = count – 1
:: (count == 0) -> break
od

}

Only one option can be selected for execution at a time. After the option completes,
the execution of the structure is repeated. The normal way to terminate the repetition
structure is with a break statement. In the example, the loop can be broken when the
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count reaches zero. It need not terminate since the other two options remain execut-
able. To force termination, we could modify the program as follows:

proctype counter()
{ do

:: (count != 0) ->
if
:: count = count + 1
:: count = count – 1
fi

:: (count == 0) -> break
od

}

JUMPS
Another way to break the loop is with an unconditional jump: the infamous goto
statement. This is illustrated in the following implementation of Euclid’s algorithm
for finding the greatest common divisor of two positive numbers:

proctype Euclid(int x, y)
{ do

:: (x > y) -> x = x – y
:: (x < y) -> y = y – x
:: (x == y) -> goto done
od;

done:
skip

}

The goto in this example jumps to a label named done. A label can only appear
before a statement. Above, we want to jump to the end of the program. In this case a
dummy statement skip is useful: it is a place holder that is always executable and has
no effect. The goto statement itself is always executable.

5.8 EXAMPLES
The following example specifies a filter that receives messages from a channel in and
divides them over two channels large and small depending on the values attached.
The constant N is defined to be 128, and size is defined to be 16 in two macro
definitions.

#define N 128
#define size 16

chan in = [size] of { short };
chan large = [size] of { short };
chan small = [size] of { short };
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proctype split()
{ short cargo;

do
:: in?cargo ->

if
:: (cargo >= N) -> large!cargo
:: (cargo < N) -> small!cargo
fi

od
}
init { run split() }

A process type that merges the two streams back into one, most likely in a different
order, and writes it back to the channel in could be specified as

proctype merge()
{ short cargo;

do
:: if

:: large?cargo
:: small?cargo
fi;
in!cargo

od
}

With the following modification to the init process, the split and merge processes
can busily perform their duties forever.

init
{ in!345; in!12; in!6777; in!32; in!0;

run split(); run merge()
}

As a final example, consider the following implementation of a Dijkstra semaphore,
using binary rendezvous communication.

#define p 0
#define v 1

chan sema = [0] of { bit };

proctype dijkstra()
{ do

:: sema!p -> sema?v
od

}
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proctype user()
{ sema?p;

/* critical section */
sema!v
/* non-critical section */

}
init
{ atomic {

run dijkstra();
run user(); run user(); run user()

}
}

The semaphore guarantees that only one user process can enter its critical section at a
time. In the example, each user process accesses its critical section only once. If
repeated access could be requested, the semaphore would not necessarily prevent one
process from monopolizing access to the critical section.

5.9 MODELING PROCEDURES AND RECURSION
Procedures, even recursive ones, can be modeled as processes. The return value can
be passed back to the calling process via a global variable or via a message. The fol-
lowing program illustrates this.

proctype fact(int n; chan p)
{ int result;

if
:: (n <= 1) -> p!1
:: (n >= 2) ->

chan child = [1] of { int };
run fact(n-1, child);
child?result;
p!n*result

fi
}
init
{ int result;

chan child = [1] of { int };

run fact(7, child);
child?result;
printf("result: %d\n", result)

}

The process fact(n, p) recursively calculates the factorial of n, communicating the
result to its parent process via channel p.

5.10 MESSAGE-TYPE DEFINITIONS
We have seen how constants can be defined using C-style macros. As a mild form of
syntactic sugar, PROMELA allows for message type definitions of the form

mtype = { ack, nak, err, next, accept }
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The definition is equivalent to the following sequence of macro definitions.
#define ack 1
#define nak 2
#define err 3
#define next 4
#define accept 5

A formal message-type definition is the preferred way of specifying the message types
since it defers any decision on the specific values to be used. At the same time, it
makes the names of the constants, rather than the values, available to an implementa-
tion, which can improve error reporting. There can be only one message-type
definition per specification.

5.11 MODELING TIMEOUTS
We have already discussed two types of statements with a predefined meaning in
PROMELA: skip and break. Another predefined statement is timeout. The timeout
statement allows a process to abort the waiting for a condition that can no longer
become true, for example, an input from an empty channel. The timeout provides an
escape from a hang state. It can be considered an artificial, predefined condition that
becomes true only when no other statements in the distributed system are executable.
Note that it carries no value: it does not specify a timeout interval, but a timeout pos-
sibility. We deliberately abstract from absolute timing considerations, which is cru-
cial in validation work, and we do not specify how the timeout should be imple-
mented. A simple example is the following process that sends a reset message to a
channel named guard whenever the system comes to a standstill.

proctype watchdog()
{ do

:: timeout -> guard!reset
od

}

The timeout, as defined here, does not model errors caused by premature timeouts in a
real system. If this is required, it can be achieved by redefining the keyword in a
macro, for instance as follows.

#define timeout 1 /* always enabled, arbitrary delay */

More examples are given in Chapter 7.

STATEMENT TYPES
With the exception of assert statements and temporal claim primitives (see Chapter
6) we have now discussed all basic types of statements defined in PROMELA:

Assignments and conditions
Selections and repetitions
Send and receive
Goto and break statements
Timeout
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Note that run and len are not statements but unary operators that can be used in
assignments and conditions.

The skip statement was introduced as a filler to satisfy syntax requirements. It is not
formally part of the language but a pseudo-statement, a synonym for another state-
ment with the same effect. Trivially, skip is equivalent to the condition (1); it is
always executable and has no effect.

5.12 LYNCH´s PROTOCOL REVISITED
Now that we have a language, let us try to describe the example protocol from
Chapter 2. The version below is based on Figures 2.1 and 2.3, with the trial extension
for accepting messages and for initializing the data transfer discussed in Section 2.4.

mtype = { ack, nak, err, next, accept }

proctype transfer(chan in, out, chin, chout)
{ byte o, i;

in?next(o);
do
:: chin?nak(i) -> out!accept(i); chout!ack(o)
:: chin?ack(i) -> out!accept(i); in?next(o); chout!ack(o)
:: chin?err(i) -> chout!nak(o)
od

}
init
{ chan AtoB = [1] of { byte, byte };

chan BtoA = [1] of { byte, byte };
chan Ain = [2] of { byte, byte };
chan Bin = [2] of { byte, byte };
chan Aout = [2] of { byte, byte };
chan Bout = [2] of { byte, byte };

atomic {
run transfer(Ain, Aout, AtoB, BtoA);
run transfer(Bin, Bout, BtoA, AtoB)

};
AtoB!err(0)

}

The channels Ain and Bin are to be filled with token messages of type next and arbi-
trary values (e.g., ASCII character values) by unspecified background processes: the
users of the transfer service. Similarly, these user processes can read received data
from the channels Aout and Bout. The processes are initialized in an atomic state-
ment and started with the dummy err message.

As a last example, below is a listing in PROMELA of a viciously complex procedure to
calculate Ackermann’s function, which is defined recursively as

ack(0,b) = b+1
ack(a,0) = ack(a-1, 1)
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ack(a,b) = ack(a-1, ack(a,b-1))

The PROMELA version is as follows.
/***** Ackermann’s function *****/

proctype ack(short a, b; chan ch1)
{ chan ch2 = [1] of { short };

short ans;

if
:: (a == 0) ->

ans = b+1
:: (a != 0) ->

if
:: (b == 0) ->

run ack(a-1, 1, ch2)
:: (b != 0) ->

run ack(a, b-1, ch2);
ch2?ans;
run ack(a-1, ans, ch2)

fi;
ch2?ans

fi;
ch1!ans

}
init
{ chan ch = [1] of { short };

short ans;

run ack(3, 3, ch);
ch?ans;
printf("ack(3,3) = %d\n", ans);
assert(0) /* a forced stop, (Chapter 6) */

}

Seems simple enough? It takes 2433 process instantiations to produce the answer.
The answer, by the way, is 61.

5.13 SUMMARY
We have introduced a notation for describing protocol procedure rules in a
specification and modeling language named PROMELA. In this chapter we have dis-
cussed PROMELA features for describing system behavior only. In the next chapter we
discuss the remaining language features that are specifically related to the
specification of correctness criteria.

The validation modeling language has several unusual features that make it suited for
modeling distributed systems. All communication between processes takes place via
either messages or shared variables. Synchronous and asynchronous communication
are modeled as special cases of a general message-passing mechanism.

Every statement in PROMELA can potentially model delay: it is either executable or
not, in most cases depending on the state of the environment of the running process.

www.spinroot.com



108 VALIDATION MODELS CHAPTER 5

Process interaction and process coordination are thus at the very basis of the language.
The semantics of the language make a mapping from the flow chart language used in
the first part of the book to PROMELA programs straightforward. It is probably good to
keep in mind that PROMELA is a modeling language, not a programming language.
There are no abstract data types, and only a few basic types of variables. A validation
model is an abstraction of a protocol implementation. The abstraction maintains the
essentials of the process interaction so that it can be studied in isolation. It suppresses
implementation and programming detail. An overview of the language can be found
in Appendix C.

In the next chapters we find good use for the language. In Chapter 7 it is used in the
design of a file transfer protocol. In Part IV we show how to develop the software for
analyzing protocol models written in PROMELA.

EXERCISES
5-1. 5-1. Assume the statement run A() is unexecutable, for instance because there were too many

processes running. Can you say if b = run A() is executable?
5-2. 5-2. If the statement (qname?var == 0) were allowed in PROMELA, what would its effect be?

Hint: consider the side-effects of the receive operation.
5-3. 5-3. Revise the two programs from Section 5.6 to incorporate the use of messages of type eot

to signify the end of an input stream.
5-4. 5-4. Rewrite the declaration for process types fact() and ack() to use a global variable

instead of messages to communicate the result of the calculation from a child process to
its parent.

5-5. 5-5. Rewrite the fact() program to return the n-th Fibonacci number, f(n) = f(n-1) +
f(n-2), instead of a factorial. By definition, f(0) = 0 and f(1) = 1.

5-6. 5-6. Rewrite your program for generating Fibonacci numbers to reduce the number of
processes that is required. (Hint: make the program singly recursive; every process
creates no more than one child.)

5-7. 5-7. Extend the model of Lynch’s protocol with two user processes that use the transfer ser-
vice.

5-8. 5-8. Extend the same program with a process type modeling a faulty transmission channel
between the two users.

5-9. 5-9. Write a PROMELA program that performs a bubble sort on the elements of a channel that
is initialized with messages of type int, each carrying a value. A bubble sort is done by
scanning through a list of numbers repeatedly, swapping any pair of adjacent numbers
that are out of order.

5-10. 5-10. Write a PROMELA program that sorts integers by building a binary tree of processes. Each
process holds one integer in the sequence. It has one parent process and up to two chil-
dren processes, left and right. The integers enter the sorter via the process at the root of
the tree. All processes follow the same discipline. If the next integer received is larger
than the one held by the receiver, it is routed to the left. If it is smaller, it is routed to the
right. Children processes are created only when necessary. When the last integer has
been processed, the values stored in the tree must be retrieved in the right order and
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printed.
5-11. 5-11. With distributed processes, it is relatively easy to design resource managers that can, for

instance, provide user programs mutually exclusive access to devices or services. Write
a sample printer server that ‘‘owns’’ a display channel and allows processes to submit a
sequence of messages to it (e.g., anything up to an eot) in fragments, without the possi-
bility of interruption by other processes.

5-12. 5-12. Rewrite the example using the Dijkstra semaphore with rendezvous communication into
a solution using asynchronous communication between the monitor process and the user
processes.

5-13. 5-13. Consider in detail why the C data types real or double are not defined in PROMELA.
5-14. 5-14. (Paul Haahr) Many processors use ‘‘interrupt priority levels’’ to ensure that some devices

get handled before others (e.g., disks are usually treated as more urgent that keyboards).
The current priority level is stored in a special CPU register, usually a 3-bit or 4-bit
integer. During normal operation, the priority level is zero. Each hardware device that
can interrupt the CPU is assigned a priority level. When a hardware interrupt occurs, if
the processor is currently running at a level less than that of the device, the processor
starts running the appropriate interrupt handler; if not, the device waits until the priority
drops and then interrupts. When the interrupt handler starts, the priority level is set to the
device’s priority. It is reset to the previous level when the handler terminates. The pro-
cessor can also set the priority level independently of the interrupt handlers, e.g., with an
instruction spl(x). This can be used to prevent an interrupt handler from being inter-
rupted in the middle—when its data structures are not necessarily in a proper state—by
another interrupt that will use the same structures. It is also used by operating systems to
assure mutual exclusion. For example, if a device (say a disk) interrupts at level six, the
device driver that runs the disk has to set the priority level temporarily to six before using
data structures that may be altered by a disk interrupt. Model the interrupt priority
scheme in PROMELA for three processes, modeling the behavior of a CPU, a disk process
and a terminal process. (Hint: use an array to model the stack of priority levels.)

5-15. 5-15. Modify the validation model for Lynch’s protocol to model the possibility of transmis-
sion errors.

BIBLIOGRAPHIC NOTES
PROMELA is an extension of a smaller language named Argos that was developed in
1983 for protocol validation, e.g., Holzmann [1985]. The syntax of PROMELA expres-
sions, declarations, and assignments is loosely based on the language C, Kernighan
and Ritchie [1978]. The language was influenced significantly by the ‘‘guarded com-
mand languages’’ of E.W. Dijkstra [1975] and C.A.R. Hoare [1978]. There are, how-
ever, important differences. Dijkstra’s language had no primitives for process interac-
tion. Hoare’s language was based exclusively on synchronous communication. Also
in Hoare’s language, the type of statements that could appear in the guards of an
option was restricted. The semantics of the selection and cycling statements in
PROMELA is also rather different from other guarded command languages: the state-
ments are not aborted when all guards are false but they block, thus providing the
required synchronization.

The mutual exclusion (or ‘‘critical section’’) problem, referred to briefly in this
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chapter, has been studied for many years. The following intriguing series of articles
documents some of the improvements that have been made: Dijkstra [1965], Knuth
[1966], deBruyn [1967], Dijkstra [1968], Eisenberg and McGuire [1972], Lamport
[1974, 1976, 1986]. More elaborate discussions can also be found in Bredt [1970] or
Holzmann [1979].
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