CHAPTER 4

Part 4: The Transport Layer

4.1 Principles of a reliable transport protocol

In this section, we depict a reliable transport protocol running above a connectionless network layer service. For
this, we first assume that the network layer provides a perfect service, i.e. :

* the connectionless network layer service never corrupts SDUs

* the connectionless network layer service never discards SDUs

* the connectionless network layer service never delays, reorders nor duplicate SDUs
* the connectionless network layer service can support SDUs of any size

We will then remove each of these assumptions one after the other in order to better understand the mechanisms
used to solve each imperfection.

4.1.1 Reliable data transfer on top of a perfect network service

The transport layer entity interacts with both a user in the application layer and an entity in the network layer.
According to the reference model, these interactions will be performed using DATA.req and DATA.ind primitives.
However, to simplify the presentation and to avoid confusion between a DATA.req primitive issued by the user
of the transport layer entity, and a DATA.req issued by the transport layer entity itself, we will use the following
terminology :

* the interactions between the user and the transport layer entity are represented by using the classical
DATA.req, DATA.ind primitives

* the interactions between the transport layer entity and the network layer service are represented by using
send instead of DATA.req and recvd instead of DATA.ind

This is illustrated in the figure below.

When running on top of a perfect connectionless network service, a transport level entity can simply issue a
send(SDU) upon arrival of a DATA.req(SDU). Similarly, the receiver issues a DATA.ind(SDU) upon receipt of a
recvd(SDU). Such a simple protocol is sufficient when a single SDU is sent.

Unfortunately, this is not always sufficient to ensure a reliable delivery of the SDUs. Consider the case where a
client sends tens of SDUs to a server. If the server is faster that the client, it will be able to receive and process
all the segments sent by the client and deliver their content to its user. However, if the server is slower than the
client, problems may arise. The transport layer entity contains buffers to store SDUs that have been received
as a Data.request from the application but have not yet been sent via the network service. If the application is
faster than the network layer, the buffer becomes full and the operating system suspends the application to let the
transport entity empty its transmission queue. The transport entity also uses a buffer to store the segments received
from the network layer that have not yet been processed by the application. If the application is slow to process the

67

Computer Networking : Principles, Protocols and Practice, Release 0.25

|

Data.req Data.ind

|

Transport
entity

i

Send

Recvd

Figure 4.1: Interactions between the transport layer, its user, and its network layer provider

Data.request(a)

.. da g.men.t‘,a)

Data.ind(a)

Figure 4.2: The simplest transport protocol

68

Chapter 4. Part 4: The Transport Layer

Computer Networking : Principles, Protocols and Practice, Release 0.25

data, this buffer becomes full and the transport entity is not able to accept anymore the segments from the network
layer. The buffers of the transport entity have a limited size ! and if they overflow, the transport entity is forced to
discard received segments.

To solve this problem, our transport protocol must include a feedback mechanism that allows the receiver to inform
the sender that it has processed a segment and that another one can be sent. This feedback is required even though
the network layer provides a perfect service. To include such a feedback, our transport protocol must process two
types of segments :

* data segments carrying a SDU

* control segments carrying an acknowledgment indicating that the previous segment was processed correctly
These two types of segments can be distinguished using a segment composed of two parts :

* the header that contains one bit set to 0 in data segments and set to / in control segments

* the payload that contains the SDU supplied by the user application

The transport entity can then be modelled as a finite state machine, containing two states for the receiver and two
states for the sender. The figure below provides a graphical representation of this state machine with the sender
above and the receiver below.

Data.req(SDU)
send (D (SDU))

— T

K—____’_,_,_/
Recvd (C (OK))

Recvd (D (SDU))
Data.ind(SDU)

Process
SDU

Send (C (OK))

Figure 4.3: Finite state machine of the simplest transport protocol

The above FSM shows that the sender has to wait for an acknowledgement from the receiver before being able to
transmit the next SDU. The figure below illustrates the exchange of a few segments between two hosts.

4.1.2 Reliable data transfer on top of an imperfect network service
The transport layer must deal with the imperfections of the network layer service. There are three types of imper-
fections that must be considered by the transport layer :

1. Segments can be corrupted by transmission errors

2. Segments can be lost

! In the application layer, most servers are implemented as processes. The network and transport layer on the other hand are usually
implemented inside the operating system and the amount of memory that they can use is limited by the amount of memory allocated to the
p P! g sy ry y y y
entire kernel.

4.1. Principles of a reliable transport protocol 69

Computer Networking : Principles, Protocols and Practice, Release 0.25

A B
Data.req(a) ""4-..,.A..D(Aa')
Data.ind(a)
Data.req(b) “_Q(OK-)"'
UDb).
Data.ind(b)
.- €(OK)

Figure 4.4: Time sequence diagram illustrating the operation of the simplest transport protocol

3. Segments can be reordered or duplicated

To deal with these types of imperfections, transport protocols rely on different types of mechanisms. The first
problem is transmission errors. The segments sent by a transport entity is processed by the network and datalink
layers and finally transmitted by the physical layer. All of these layers are imperfect. For example, the physical
layer may be affected by different types of errors :

 random isolated errors where the value of a single bit has been modified due to a transmission error
 random burst errors where the values of n consecutive bits have been changed due to transmission errors

¢ random bit creations and random bit removals where bits have been added or removed due to transmission
errors

The only solution to protect against transmission errors is to add redundancy to the segments that are sent. In-
formation Theory defines two mechanisms that can be used to transmit information over a transmission channel
affected by random errors. These two mechanisms add redundancy to the information sent, to allow the receiver
to detect or sometimes even correct transmission errors. A detailed discussion of these mechanisms is outside the
scope of this chapter, but it is useful to consider a simple mechanism to understand its operation and its limitations.

Information theory defines coding schemes. There are different types of coding schemes, but let us focus on coding
schemes that operate on binary strings. A coding scheme is a function that maps information encoded as a string
of m bits into a string of n bits. The simplest coding scheme is the even parity coding. This coding scheme takes
an m bits source string and produces an m+1 bits coded string where the first m bits of the coded string are the bits
of the source string and the last bit of the coded string is chosen such that the coded string will always contain an
even number of bits set to /. For example :

e 1001 is encoded as 10010
e /101 is encoded as 11011

This parity scheme has been used in some RAMs as well as to encode characters sent over a serial line. It is easy
to show that this coding scheme allows the receiver to detect a single transmission error, but it cannot correct it.
However, if two or more bits are in error, the receiver may not always be able to detect the error.

Some coding schemes allow the receiver to correct some transmission errors. For example, consider the coding
scheme that encodes each source bit as follows :

e Jisencoded as /7]
¢ (0 1is encoded as 000

For example, consider a sender that sends //1. If there is one bit in error, the receiver could receive 011 or 101 or
110. In these three cases, the receiver will decode the received bit pattern as a / since it contains a majority of bits
set to /. If there are two bits in error, the receiver will not be able anymore to recover from the transmission error.

70 Chapter 4. Part 4: The Transport Layer

Computer Networking : Principles, Protocols and Practice, Release 0.25

This simple coding scheme forces the sender to transmit three bits for each source bit. However, it allows the
receiver to correct single bit errors. More advanced coding systems that allow to recover from errors are used in
several types of physical layers.

Transport protocols use error detection schemes, but none of the widely used transport protocols rely on error
correction schemes. To detect errors, a segment is usually divided into two parts :

* a header that contains the fields used by the transport protocol to ensure reliable delivery. The header con-
tains a checksum or Cyclical Redundancy Check (CRC) [Williams1993] that is used to detect transmission
errors

* a payload that contains the user data passed by the application layer.

Some segment headers also include a length , which indicates the total length of the segment or the length of the
payload.

The simplest error detection scheme is the checksum. A checksum is basically an arithmetic sum of all the bytes
that a segment is composed of. There are different types of checksums. For example, an eight bit checksum can
be computed as the arithmetic sum of all the bytes of (both the header and trailer of) the segment. The checksum
is computed by the sender before sending the segment and the receiver verifies the checksum upon reception
of each segment. The receiver discards segments received with an invalid checksum. Checksums can be easily
implemented in software, but their error detection capabilities are limited. Cyclical Redundancy Checks (CRC)
have better error detection capabilities [SGP98], but require more CPU when implemented in software.

Note: Checksums, CRCs, ...

Most of the protocols in the TCP/IP protocol suite rely on the simple Internet checksum in order to verify that the
received segment has not been affected by transmission errors. Despite its popularity and ease of implementation,
the Internet checksum is not the only available checksum mechanism. Cyclical Redundancy Checks (CRC) are
very powerful error detection schemes that are used notably on disks, by many datalink layer protocols and file
formats such as zip or png. They can easily be implemented efficiently in hardware and have better error-detection
capabilities than the Internet checksum [SGP98] . However, when the first transport protocols were designed,
CRCs were considered to be too CPU-intensive for software implementations and other checksum mechanisms
were used instead. The TCP/IP community chose the Internet checksum, the OSI community chose the Fletcher
checksum [Sklower89] . Now, there are efficient techniques to quickly compute CRCs in software [Feldmeier95]
, the SCTP protocol initially chose the Adler-32 checksum but replaced it recently with a CRC (see RFC 3309).

The second imperfection of the network layer is that segments may be lost. As we will see later, the main cause
of packet losses in the network layer is the lack of buffers in intermediate routers. Since the receiver sends an
acknowledgement segment after having received each data segment, the simplest solution to deal with losses is to
use a retransmission timer. When the sender sends a segment, it starts a retransmission timer. The value of this
retransmission timer should be larger than the round-trip-time, i.e. the delay between the transmission of a data
segment and the reception of the corresponding acknowledgement. When the retransmission timer expires, the
sender assumes that the data segment has been lost and retransmits it. This is illustrated in the figure below.

Unfortunately, retransmission timers alone are not sufficient to recover from segment losses. Let us consider, as
an example, the situation depicted below where an acknowledgement is lost. In this case, the sender retransmits
the data segment that has not been acknowledged. Unfortunately, as illustrated in the figure below, the receiver
considers the retransmission as a new segment whose payload must be delivered to its user.

To solve this problem, transport protocols associate a sequence number to each data segment. This sequence
number is one of the fields found in the header of data segments. We use the notation D(S,...) to indicate a
data segment whose sequence number field is set to S. The acknowledgements also contain a sequence number
indicating the data segments that it is acknowledging. We use OKS to indicate an acknowledgement segment that
confirms the reception of D(S,...). The sequence number is encoded as a bit string of fixed length. The simplest
transport protocol is the Alternating Bit Protocol (ABP).

The Alternating Bit Protocol uses a single bit to encode the sequence number. It can be implemented easily. The
sender and the receivers only require a four states Finite State Machine.

The initial state of the sender is Wait for D(0,...). In this state, the sender waits for a Data.request. The first data
segment that it sends uses sequence number 0. After having sent this segment, the sender waits for an OKO ac-

4.1. Principles of a reliable transport protocol 7

Computer Networking : Principles, Protocols and Practice, Release 0.25

A B
Data.req(a)
start timer “D(a)
(oK Data.ind(a)
cancel timer (0)
Data.req(b) ———————¢~
start timer “...D(b) | —Lost segment
timer expires | D(b)
Data.ind(b)
..+C(OK)

Figure 4.5: Using retransmission timers to recover from segment losses

A B
Data.req(a)
start timer| -.D(a)
C(OK).. Data.ind(a)
Dat) cancel timer| .7
ata.req start timer | | D(b)
C(OK)... " Data.ind(b)
timer expires / D(b)
Lost SEQmel'f{ Data.ind(b) !!!!!!

C(F_)_K)..-

Figure 4.6: Limitations of retransmission timers

72 Chapter 4. Part 4: The Transport Layer

Computer Networking : Principles, Protocols and Practice, Release 0.25

Recvd(C(NAK?)) OR
Recvd(C(OK1)) or timer expires
send(D(0,SDU,CRC))
restart_timer()

_Data.req(SDU) __
send(D(0,SDU,CRC))
start_timer() /D

Recvd(C(OK1)) Recvd(C(OKO0))
cancel_timer() cancel_timer()

_ Data.req(SDU) _
send(D(1,SDU,CRC))

start_timer()
- All corrupted

segments are
discarded in all states

Recvd(C(NAK?)) or recvd(C(OKO0)) or timer expires
send(D(1,SDU,CRC))
restart-timer()

Figure 4.7: Alternating bit protocol : Sender FSM

knowledgement. A segment is retransmitted upon expiration of the retransmission timer or if an acknowledgement
with an incorrect sequence number has been received.

The receiver first waits for D(0,...). If the segment contains a correct CRC, it passes the SDU to its user and sends
OKO. 1If the segment contains an invalid CRC, it is immediately discarded. Then, the receiver waits for D(/,...).
In this state, it may receive a duplicate D(0,...) or a data segment with an invalid CRC. In both cases, it returns an
OKO segment to allow the sender to recover from the possible loss of the previous OKO segment.

Note: Dealing with corrupted segments

The receiver FSM of the Alternating bit protocol discards all segments that contain an invalid CRC. This is the
safest approach since the received segment can be completely different from the segment sent by the remote host.
A receiver should not attempt at extracting information from a corrupted segment because it cannot know which
portion of the segment has been affected by the error.

The figure below illustrates the operation of the alternating bit protocol.

The Alternating Bit Protocol can recover from transmission errors and segment losses. However, it has one
important drawback. Consider two hosts that are directly connected by a 50 Kbits/sec satellite link that has a 250
milliseconds propagation delay. If these hosts send 1000 bits segments, then the maximum throughput that can be
achieved by the alternating bit protocol is one segment every 20 4 250 4+ 250 = 520 milliseconds if we ignore the
transmission time of the acknowledgement. This is less than 2 Kbits/sec !

Go-back-n and selective repeat

To overcome the performance limitations of the alternating bit protocol, transport protocols rely on pipelining.
This technique allows a sender to transmit several consecutive segments without being forced to wait for an
acknowledgement after each segment. Each data segment contains a sequence number encoded in an 7 bits field.

Pipelining allows the sender to transmit segments at a higher rate, but we need to ensure that the receiver does not
become overloaded. Otherwise, the segments sent by the sender are not correctly received by the destination. The

4.1. Principles of a reliable transport protocol 73

Computer Networking : Principles, Protocols and Practice, Release 0.25

Recvd(D(1,SDU,CRC)) Recvd(D(0,SDU,CRC))
AND ISOK(CRC,SDU) AND ISOK(CRC,SDU)
Send(C(OK1)) Recvd(D(0,5DU,CRC)) Send(C(OKO0))

AND IsOK(CRC,SDU)
Data.ind(SDU)

\ Recvd(D(1,SDU,CRC))

AND IsOK(CRC,SDU)

Send(C(0K1)) Data.ind(SDU)
All corrupted \
segments are Process
discarded in all states SDU1

OK

Figure 4.8: Alternating bit protocol : Receiver FSM

A B
Data.req(a) .
Data.req(b) c(oKol 1 Data.ind(a)
. B, b)

Retransmission timer

e D(Lb)
() Data.ind(b)

C(OK:U | Duplicate detected
. E{OKL)
Data.req(c)
Dv(.o’..a... x
Retransmission timer
D(0, ¢) ",

Data.ind(c)

Figure 4.9: Operation of the alternating bit protocol

A B
Data.req(a) ————— D(0,a)
Data.req(b) - \

Data.req(e)

Data.ind(a)

Data.ind(e)

Figure 4.10: Pipelining to improve the performance of transport protocols

74 Chapter 4. Part 4: The Transport Layer

Computer Networking : Principles, Protocols and Practice, Release 0.25

transport protocols that rely on pipelining allow the sender to transmit W unacknowledged segments before being
forced to wait for an acknowledgement from the receiving entity.

This is implemented by using a sliding window. The sliding window is the set of consecutive sequence numbers
that the sender can use when transmitting segments without being forced to wait for an acknowledgement. The
figure below shows a sliding window containing five segments (6,7,8,9 and 10). Two of these sequence numbers
(6 and 7) have been used to send segments and only three sequence numbers (8, 9 and /0) remain in the sliding

window. The sliding window is said to be closed once all sequence numbers contained in the sliding window have
been used.

Acked segments Forbidden seq. num.

\ /

..012345678910111213 1415

—

/ * Available seg. nums
Unacknowledged segments

Figure 4.11: The sliding window

The figure below illustrates the operation of the sliding window. The sliding window shown contains three seg-
ments. The sender can thus transmit three segments before being forced to wait for an acknowledgement. The
sliding window moves to the higher sequence numbers upon reception of acknowledgements. When the first
acknowledgement (OKO) is received, it allows the sender to move its sliding window to the right and sequence
number 3 becomes available. This sequence number is used later to transmit SDU d.

A B
Sending window
012345678 Dpata.req(a)

012/345678 NG
012345678 Datareq(b)

D(0,a)

0712345678 R
D(1,b)
Data.req(c) \ Data.ind(a)
D(2,c) I
012345678 oKy —2ata.nd(b)

C(OK1) ™
01(234/5678 pata req(d)| (OK1)
012345678 TR .

012345678 Datareq(e)-—"
012345678

Data.ind(c)

Q
O
x
X2

Data.ind(d)

Figure 4.12: Sliding window example

In practice, as the segment header encodes the sequence number in an #n bits string, only the sequence numbers
between 0 and 2" — 1 can be used. This implies that the same sequence number is used for different segments and
that the sliding window will wrap. This is illustrated in the figure below assuming that 2 bits are used to encode

the sequence number in the segment header. Note that upon reception of OK/, the sender slides its window and
can use sequence number 0 again.

Unfortunately, segment losses do not disappear because a transport protocol is using a sliding window. To recover
from segment losses, a sliding window protocol must define :

* a heuristic to detect segment losses

* aretransmission strategy to retransmit the lost segments.

4.1. Principles of a reliable transport protocol 75

Computer Networking : Principles, Protocols and Practice, Release 0.25

A B

Sending window
0123

0123
0123 Data.req(b)

0123
- Data.req(c) w’b)

Data.req(a)

D(0,a)

//

DE2.0) Data.ind(a)
o723 _COK0 S\ sr—paadndl)
_C(OK1)~ S—
%} Data.req(d) - _C(OK2)
ZE Data.req(e)|-- D(3,d)
0123 \D 00 Data.ind(d)

Figure 4.13: Utilisation of the sliding window with modulo arithmetic

The simplest sliding window protocol uses go-back-n recovery. Intuitively, go-back-n operates as follows. A
go-back-n receiver is as simple as possible. It only accepts the segments that arrive in-sequence. A go-back-
n receiver discards any out-of-sequence segment that it receives. When go-back-n receives a data segment, it
always returns an acknowledgement containing the sequence number of the last in-sequence segment that it has
received. This acknowledgement is said to be cumulative. When a go-back-n receiver sends an acknowledgement
for sequence number x, it implicitly acknowledges the reception of all segments whose sequence number is earlier
than x. A key advantage of these cumulative acknowledgements is that it is easy to recover from the loss of an
acknowledgement. Consider for example a go-back-n receiver that received segments /, 2 and 3. It sent OKI,
OK?2 and OK3. Unfortunately, OKI and OK2 were lost. Thanks to the cumulative acknowledgements, when the
receiver receives OK3, it knows that all three segments have been correctly received.

The figure below shows the FSM of a simple go-back-n receiver. This receiver uses two variables : lastack and
next. next is the next expected sequence number and lastack the sequence number of the last data segment that has
been acknowledged. The receiver only accepts the segments that are received in sequence. maxseq is the number
of different sequence numbers (2").

All corrupted Recvd(D(next,SDU,CRC))
segments are AND IsOK(CRC,SDU)
discarded in all states \V} Data.ind(SDU)
Process
)
oK

send(C(OK,next,CRC));
Recvd(D(t<>next,SDU,CRC)) lastack = next
AND IsOK(CRC,SDU) next=(next+1) % maxseq;
discard(SDU);
send(C(OK,lastack ,CRC));

Figure 4.14: Go-back-n : receiver FSM

A go-back-n sender is also very simple. It uses a sending buffer that can store an entire sliding window of
segments ~ . The segments are sent with increasing sequence number (modulo maxseq). The sender must wait for

2 The size of the sliding window can be either fixed for a given protocol or negotiated during the connection establishment phase. We’ll
see later that it is also possible to change the size of the sliding window during the connection’s lifetime.

76 Chapter 4. Part 4: The Transport Layer

Computer Networking : Principles, Protocols and Practice, Release 0.25

an acknowledgement once its sending buffer is full. When a go-back-n sender receives an acknowledgement, it
removes from the sending buffer all the acknowledged segments and uses a retransmission timer to detect segment
losses. A simple go-back-n sender maintains one retransmission timer per connection. This timer is started when
the first segment is sent. When the go-back-n sender receives an acknowledgement, it restarts the retransmission
timer only if there are still unacknowledged segments in its sending buffer. When the retransmission timer expires,
the go-back-n sender assumes that all the unacknowledged segments currently stored in its sending buffer have
been lost. It thus retransmits all the unacknowledged segments in the buffer and restarts its retransmission timer.

All corrupted
segments are Data.req(SDU)
discarded in all states size(buffer) < w
(seq==unack) { start_timer;
insert_in_buffer(seq, SDU);
send(D(seq,SDU,CRC));
seq=(seq+1) % maxseq;

Recvd(C(OK,t,CRC))
and CRCOK(C(OK,t,CRC)) timer expires
remove acked seqs from buffer; for all (i, SDU) in buffer
unpack = (t+1) % maxseq; { send(D(i,SDU,CRC)); }
if (unpack==seq) { restart_timer();
cancel_timer(); } else -
{ restart_timer(); }

Figure 4.15: Go-back-n : sender FSM

The operation of go-back-n is illustrated in the figure below. In this figure, note that upon reception of the out-
of-sequence segment D(2,c), the receiver returns a cumulative acknowledgement C(OK,0) that acknowledges all
the segments that have been received in sequence. The lost segment is retransmitted upon the expiration of the
retransmission timer.

A B
Sending window
0123 Data.req(a)
012]3 —
0123 Data-@@L\D(Om Segment lost
0123 D(
I Data.req(c) .
D2.0) Data.ind(a)
0/123| Retransmission C(OK,0)" \
timer expires Not expected seq num,

Data.req(d) C(OK,0) | discarded
0723 v 1
0123 Data.req(e)|”
Sending window is full Data"ndg;)ta ind(c)
Application blocked Dat " d(d
e will be accepted ata.ind(d)
and sent later

Figure 4.16: Go-back-n : example

The main advantage of go-back-n is that it can be easily implemented, and it can also provide good performance
when only a few segments are lost. However, when there are many losses, the performance of go-back-n quickly
drops for two reasons :

* the go-back-n receiver does not accept out-of-sequence segments
e the go-back-n sender retransmits all unacknowledged segments once its has detected a loss

Selective repeat is a better strategy to recover from segment losses. Intuitively, selective repeat allows the receiver
to accept out-of-sequence segments. Furthermore, when a selective repeat sender detects losses, it only retransmits
the segments that have been lost and not the segments that have already been correctly received.

4.1. Principles of a reliable transport protocol 77

Computer Networking : Principles, Protocols and Practice, Release 0.25

A selective repeat receiver maintains a sliding window of W segments and stores in a buffer the out-of-sequence
segments that it receives. The figure below shows a five segment receive window on a receiver that has already
received segments 7 and 9.

.012345 78/91011 12131415 ..

= \
Segments
Acce table segments - -
’:‘;g;?ewgfsged Out of sequence P 9 outside receiving
segments window

Figure 4.17: The receiving window with selective repeat

A selective repeat receiver discards all segments having an invalid CRC, and maintains the variable lastack as
the sequence number of the last in-sequence segment that it has received. The receiver always includes the value
of lastack in the acknowledgements that it sends. Some protocols also allow the selective repeat receiver to
acknowledge the out-of-sequence segments that it has received. This can be done for example by placing the
list of the sequence numbers of the correctly received, but out-of-sequence segments in the acknowledgements
together with the lastack value.

When a selective repeat receiver receives a data segment, it first verifies whether the segment is inside its receiving
window. If yes, the segment is placed in the receive buffer. If not, the received segment is discarded and an
acknowledgement containing lastack is sent to the sender. The receiver then removes all consecutive segments
starting at lastack (if any) from the receive buffer. The payloads of these segments are delivered to the user,
lastack and the receiving window are updated, and an acknowledgement acknowledging the last segment received
in sequence is sent.

The selective repeat sender maintains a sending buffer that can store up to W unacknowledged segments. These
segments are sent as long as the sending buffer is not full. Several implementations of a selective repeat sender
are possible. A simple implementation is to associate a retransmission timer to each segment. The timer is started
when the segment is sent and cancelled upon reception of an acknowledgement that covers this segment. When a
retransmission timer expires, the corresponding segment is retransmitted and this retransmission timer is restarted.
When an acknowledgement is received, all the segments that are covered by this acknowledgement are removed
from the sending buffer and the sliding window is updated.

The figure below illustrates the operation of selective repeat when segments are lost. In this figure, C(OK,x) is
used to indicate that all segments, up to and including sequence number x have been received correctly.

A B
Sending window Rec. window
0123 Data.req(a) 0123
0123 Dat —.b
0123 ata.req(b) \D(O @) | ost segment
0123 D(1.b
Data.req(c) (1.0))
Data.lnd(a)
D(2,c) 0123
o[723] . C(OK,0) \
Retransmission
0723 timerexpires S0k 0,z7] Segment stored 0[123)
o123 Data-reQ(d)\ (1,0)
o123 \
D(k Data.ind(b) 0[723]
Dataind(c) 0123
COK2) Data.ind(d) :
T C(OK3) - 0123

Figure 4.18: Selective repeat : example

Pure cumulative acknowledgements work well with the go-back-n strategy. However, with only cumulative ac-
knowledgements a selective repeat sender cannot easily determine which data segments have been correctly re-
ceived after a data segment has been lost. For example, in the figure above, the second C(OK,0) does not inform

78 Chapter 4. Part 4: The Transport Layer

Computer Networking : Principles, Protocols and Practice, Release 0.25

explicitly the sender of the reception of D(2,c) and the sender could retransmit this segment although it has al-
ready been received. A possible solution to improve the performance of selective repeat is to provide additional
information about the received segments in the acknowledgements that are returned by the receiver. For example,
the receiver could add in the returned acknowledgement the list of the sequence numbers of all segments that
have already been received. Such acknowledgements are sometimes called selective acknowledgements. This is
illustrated in the figure below.

In the figure above, when the sender receives C(OK,0,[2]), it knows that all segments up to and including D(0,...)
have been correctly received. It also knows that segment D(2,...) has been received and can cancel the retrans-
mission timer associated to this segment. However, this segment should not be removed from the sending buffer
before the reception of a cumulative acknowledgement (C(OK,2) in the figure above) that covers this segment.

Note: Maximum window size with go-back-n and selective repeat

A transport protocol that uses » bits to encode its sequence number can send up to 2™ different segments. However,
to ensure a reliable delivery of the segments, go-back-n and selective repeat cannot use a sending window of 2"
segments. Consider first go-back-n and assume that a sender sends 2" segments. These segments are received
in-sequence by the destination, but all the returned acknowledgements are lost. The sender will retransmit all
segments and they will all be accepted by the receiver and delivered a second time to the user. It is easy to see that
this problem can be avoided if the maximum size of the sending window is 2" — 1 segments. A similar problem
occurs with selective repeat. However, as the receiver accepts out-of-sequence segments, a sending window of
2™ — 1 segments is not sufficient to ensure a reliable delivery of all segments. It can be easily shown that to avoid
this problem, a selective repeat sender cannot use a window that is larger than % segments.

Go-back-n or selective repeat are used by transport protocols to provide a reliable data transfer above an unreliable
network layer service. Until now, we have assumed that the size of the sliding window was fixed for the entire
lifetime of the connection. In practice a transport layer entity is usually implemented in the operating system and
shares memory with other parts of the system. Furthermore, a transport layer entity must support several (possibly
hundreds or thousands) of transport connections at the same time. This implies that the memory which can be
used to support the sending or the receiving buffer of a transport connection may change during the lifetime of the
connection * . Thus, a transport protocol must allow the sender and the receiver to adjust their window sizes.

To deal with this issue, transport protocols allow the receiver to advertise the current size of its receiving window
in all the acknowledgements that it sends. The receiving window advertised by the receiver bounds the size of
the sending buffer used by the sender. In practice, the sender maintains two state variables : swin, the size of its
sending window (that may be adjusted by the system) and rwin, the size of the receiving window advertised by
the receiver. At any time, the number of unacknowledged segments cannot be larger than min(swin,rwin) * . The
utilisation of dynamic windows is illustrated in the figure below.

The receiver may adjust its advertised receive window based on its current memory consumption, but also to limit
the bandwidth used by the sender. In practice, the receive buffer can also shrink as the application may not able to
process the received data quickly enough. In this case, the receive buffer may be completely full and the advertised
receive window may shrink to 0. When the sender receives an acknowledgement with a receive window set to 0,
it is blocked until it receives an acknowledgement with a positive receive window. Unfortunately, as shown in the
figure below, the loss of this acknowledgement could cause a deadlock as the sender waits for an acknowledgement
while the receiver is waiting for a data segment.

To solve this problem, transport protocols rely on a special timer : the persistence timer. This timer is started
by the sender whenever it receives an acknowledgement advertising a receive window set to 0. When the timer
expires, the sender retransmits an old segment in order to force the receiver to send a new acknowledgement, and
hence send the current receive window size.

To conclude our description of the basic mechanisms found in transport protocols, we still need to discuss the
impact of segments arriving in the wrong order. If two consecutive segments are reordered, the receiver relies on
their sequence numbers to reorder them in its receive buffer. Unfortunately, as transport protocols reuse the same
sequence number for different segments, if a segment is delayed for a prolonged period of time, it might still be
accepted by the receiver. This is illustrated in the figure below where segment D(1,b) is delayed.

3 For a discussion on how the sending buffer can change, see e.g. [SMM1998]
4 Note that if the receive window shrinks, it might happen that the sender has already sent a segment that is not anymore inside its window.
This segment will be discarded by the receiver and the sender will retransmit it later.

4.1. Principles of a reliable transport protocol 79

Computer Networking : Principles, Protocols and Practice, Release 0.25

A

Swin=3, rwin=1

@Il 23 Data.req(a)

_—

Rwin=1

~\D(0 a) @123

Data.ind(a) 02 3
Swin=3, rwin=1

o123

Data.req(b)

2 new buffers become
available

Data.req(c) o @
Swin=3, rwin=3 - \
2,c Data.ind(b
0[123] patareq(d) | "% ok 2wz b
Figure 4.19: Dynamic receiving window
A B
Swin=3, rwin=1 Rwin=1
123 Data.req(a)
\D(O,a) —
0123
\ Receiver cannot handle
| segment immediately
. .) C(OK,0, Wzo).w Data.ind(a)
Swin=3, rwin=0 Data.req(b) .
0123 2 new buffers are
Window blocked ~ Lost segment available
No transmission possible \. C(OK o3 . @ 1@
Waits for control segment Waits for data segment

Figure 4.20: Risk of deadlock with dynamic windows

Chapter 4. Part 4: The Transport Layer

Computer Networking : Principles, Protocols and Practice, Release 0.25

Data.req(a)

A B
Data.ind(a)
Timer expiration
Retransmission)
Data.ind(b)

Data.ind(e)
Data.ind(e)

Figure 4.21: Ambiguities caused by excessive delays

To deal with this problem, transport protocols combine two solutions. First, they use 32 bits or more to encode
the sequence number in the segment header. This increases the overhead, but also increases the delay between
the transmission of two different segments having the same sequence number. Second, transport protocols require
the network layer to enforce a Maximum Segment Lifetime (MSL). The network layer must ensure that no packet
remains in the network for more than MSL seconds. In the Internet the MSL is assumed ° to be 2 minutes RFC
793. Note that this limits the maximum bandwidth of a transport protocol. If it uses n bits to encode its sequence
numbers, then it cannot send more than 2" segments every MSL seconds.

Transport protocols often need to send data in both directions. To reduce the overhead caused by the acknowledge-
ments, most transport protocols use piggybacking. Thanks to this technique, a transport entity can place inside the
header of the data segments that it sends, the acknowledgements and the receive window that it advertises for the
opposite direction of the data flow. The main advantage of piggybacking is that it reduces the overhead as it is not
necessary to send a complete segment to carry an acknowledgement. This is illustrated in the figure below where
the acknowledgement number is underlined in the data segments. Piggybacking is only used when data flows
in both directions. A receiver will generate a pure acknowledgement when it does not send data in the opposite
direction as shown in the bottom of the figure.

A B
Data.req(a)
Data.req(b), \D(O,Q,a) Eror
>~ Data.req(w)
Data.req(c D(1.Q.b) —
Data.ind(a)
D(2,0,c —_—
Data.ind(w) D(5,0,w) Discarded

D(5,0,w) acks D(0,0,a) > Data.req(x)

Retransmission >(D(6'O'X) Segment -> buffer
Data.req(d) (,20)
Data.ind(x) .—\ \ Data.ind(b)

Data.ind(c)
Data.ind(d)

Figure 4.22: Piggybacking

5 As we will see in the next chapter, the Internet does not strictly enforce this MSL. However, it is reasonable to expect that most packets
on the Internet will not remain in the network during more than 2 minutes. There are a few exceptions to this rule, such as RFC 1149 whose
implementation is described in http://www.blug.linux.no/rfc1149/ but there are few real links supporting RFC 1149 in the Internet.

4.1. Principles of a reliable transport protocol 81

Computer Networking : Principles, Protocols and Practice, Release 0.25

The last point to be discussed about the data transfer mechanisms used by transport protocols is the provision of a
byte stream service. As indicated in the first chapter, the byte stream service is widely used in the transport layer.
The transport protocols that provide a byte stream service associate a sequence number to all the bytes that are
sent and place the sequence number of the first byte of the segment in the segment’s header. This is illustrated in
the figure below. In this example, the sender chooses to put two bytes in each of the first three segments. This is
due to graphical reasons, a real transport protocol would use larger segments in practice. However, the division of
the byte stream into segments combined with the losses and retransmissions explain why the byte stream service
does not preserve the SDU boundaries.

A B

Data.req(abcdef)

S~ Lost segment

Data.ind(ab)
Expiration time ‘,,C(O_K_,1)“' \

Retransmission

—
Data.req(ijkI) \ =

Placed in buffer

Data.reg(mnop) D(2,cd)\‘
\D(__S_,ijklmnop') ----- Data.ind(cdef)
-—C(OK.9) Data.ind(jjkimnop)
. COK13)

Figure 4.23: Provision of the byte stream service

Connection establishment and release

The last points to be discussed about the transport protocol are the mechanisms used to establish and release a
transport connection.

We explained in the first chapters the service primitives used to establish a connection. The simplest approach to
establish a transport connection would be to define two special control segments : CR and CA. The CR segment is
sent by the transport entity that wishes to initiate a connection. If the remote entity wishes to accept the connection,
it replies by sending a CA segment. The transport connection is considered to be established once the CA segment
has been received and data segments can be sent in both directions.

Connect.reqg —CR Connect.ind

Connect.conf /CA"’/ Connect.resp

Connection established
Connection established

Figure 4.24: Naive transport connection establishment

Unfortunately, this scheme is not sufficient for several reasons. First, a transport entity usually needs to maintain
several transport connections with remote entities. Sometimes, different users (i.e. processes) running above a
given transport entity request the establishment of several transport connections to different users attached to the
same remote transport entity. These different transport connections must be clearly separated to ensure that data
from one connection is not passed to the other connections. This can be achieved by using a connection identifier,
chosen by the transport entities and placed inside each segment to allow the entity which receives a segment to
easily associate it to one established connection.

82 Chapter 4. Part 4: The Transport Layer

