
1 © O. Bonaventure 2008CNP3/2008.1.

Basic concepts

● Abstract model of the network behaviour
- Network is considered as a black box
- Users interact with the network by using primitives that

are exchanged through a service access point (SAP)

User A User B

Service provider (‘the network”)

Service Access Point

Primitives

2 © O. Bonaventure 2008CNP3/2008.1.

Types of primitives

● Primitive
- Abstract representation of the interaction between one

user and its network provider
- Can contain parameters such as :

● source
● destination
● message (SDU or Service Data Unit)

Service provider (“network”)

3 © O. Bonaventure 2008CNP3/2008.1.

Types of primitives (2)

● X.confirm
● primitive generated by the network provider to a user (related to

a remote X.response primitive)

User A User B

Service provider (the network)

X.confirmX.request

• X.request
• request from a user to a service provider

X.indication

• X.indication
• primitive generated by the network provider to a user (often

related to an earlier and remote X.request primitive)

X.response

• X.response
• primitive used to answer to an earlier X.indication primitive

4 © O. Bonaventure, 2008CNP3/2008.3.

The transport layer (2)

● Internal organisation
- The transport layer uses the service provide by the

network layer
- Two transport layer entities exchanges segments

Packet

Transport
entity

Transport
entity

Transport
layer

Application Application

Network

Segment

Network

ADU

5 © O. Bonaventure, 2008CNP3/2008.3.

Contents

l A short history of networking

l Basics Reminder

l Case study : Building a reliable transport layer

6 © O. Bonaventure, 2008CNP3/2008.3.

Transport layer protocols

● How can we provide a reliable service in the
transport layer

- Hypotheses : always start simple !
● The application sends small SDUs
● The network layer provides a perfect service

● There are no transmission errors inside the packets
● No packet is lost
● There is no packet reordering
● There are no duplications of packets

● Data transmission is unidirectional

7 © O. Bonaventure, 2008CNP3/2008.3.

Transport layer protocols (2)

● Reference environment

- Notations
● data.req and data.ind primitives for

application/transport interactions
● recv() and send() for interactions between transport

entity and network layer

Packet

Transport
entity

Transport
entity

Transport
layer

Application Application

Network

Segment

Network

ADU

8 © O. Bonaventure, 2008CNP3/2008.3.

Protocol 1 : Basics

- Principle
● Upon reception of data.request(SDU), the transport entity

sends a segment containing this SDU through the network
layer (send(SDU))

● Upon reception of the contents of one packet from the network
layer (recv(SDU)), transport entity delivers the SDU found in
the packet to its user by using
data.ind(SDU)

A B

Data.request(a) Segment(a)

Data.ind(a)

send(a)

recv(a)

9 © O. Bonaventure, 2008CNP3/2008.3.

Protocol 1 as a FSM

● Sender

● Receiver

Data.req(SDU)

send(SDU)

recvd(SDU)

Data.ind(SDU)

Wait
for

SDU

Wait
for

segment

10 © O. Bonaventure, 2008CNP3/2008.3.

Protocol 1 : Example

- Issue
● What happens if the receiver is much slower than the sender ?

● e.g. receiver can process one segment per second while sender is
producing 10 segments per second ?

A B

Data.request(a) Segment(a)

Data.ind(a)Data.request(b) Segment(b)

Data.ind(b)Data.request(c) Segment(c)

Data.ind(c)

11 © O. Bonaventure, 2008CNP3/2008.3.

Protocol 2

● Principle
- Use a control segment (OK) that is sent by the receiver

after having processed the received segment
- creates a feedback loop between sender and receiver

● Consequences
- Two types of segments

● Data segment containing on SDU
● Notation : D(SDU)

● Control segment
● Notation : C(OK)

- Segment format
● At least one bit in the segment header is used to indicate the

type of segment
Type

12 © O. Bonaventure, 2008CNP3/2008.3.

Protocol 2 (cont.)

● Sender

● Receiver

Data.req(SDU)
send(D(SDU))

Wait
for

SDU

Wait
for
OK

Recvd(C(OK))
-

Recvd(D(SDU))
Data.ind(SDU)

Wait
for

segment

Process
SDU

-
Send(C(OK))

13 © O. Bonaventure, 2008CNP3/2008.3.

Protocol 2 : Example

Lock-step : - The sender is locked until it
 receives next OK from the receiver.
 - Only one message in flight at any
 time.

A B

Data.req(b) C(OK) Data.ind(a)

D(a)Data.req(a)

D(b)

Data.ind(b)
C(OK)

