
2.2 Verifying a program in SPIN 23

Advanced: Deductive verification

An alternative approach to verification is deduction. A formal seman-
tics is defined for program constructs and then a formal logic with
axioms and inference rules is used to deduce that a program satis-
fies correctness specifications, expressed, for example, as assertions.
The advantage of deductive verification is that it is not limited by the
size of the state space because the deduction is done on symbolic for-
mulas; the disadvantage is that it is less amenable to automation and
requires mathematical ingenuity.
A deductive verification of the program in Listing 2.2 is given in Sec-
tion B.4 of PCDP; it was partially automated using the verification
capabilities of the SPARK system [3].
For an overview of deductive verification, see Chapter 9 of MLCS; an
advanced textbook is [1].

2.2 Verifying a program in SPIN

Consider the program in Listing 2.3 that has an error in the second alternative
(line 5). When a equals b a random simulation is just as likely to take the
first alternative of the if-statement as the second. In fact, even if we run
the simulation repeatedly, it is possible – although unlikely – that the same
alternative will always be taken. In other words, no amount of simulation
can ever verify that the postcondition is true, because it may become true if
one alternative is taken, while it is falsified in the other alternative.

Listing 2.3. Maximum with an error

1 active proctype P() {
2 int a = 5, b = 5, max;
3 if
4 :: a >= b -> max = a;
5 :: b >= a -> max = b+1;
6 fi;
7 assert (a >= b -> max == a : max == b)
8 }

The only way to verify that a program is correct is to systematically check
that the correctness specifications hold in all possible computations, and that is
what model checkers like SPIN are designed to do.

24 2 Verification of Sequential Programs

In a deterministic program (with no input), there is only one possible
computation, so a single random simulation will suffice to demonstrate the
correctness of a program. For a concurrent or nondeterministic program,
checking all possible computations involves executing the program and
backtracking over each choice of the next statement to execute. One of the
ways that SPIN achieves efficiency is by generating an optimized program
called a verifier for each PROMELA model. Verification in SPIN is a three-step
process (Figure 2.1):

• Generate the verifier from the PROMELA source code.
The verifier is a program written in C.

• Compile the verifier using a C compiler.
• Execute the verifier. The result of the execution of the verifier is a report

that all computations are correct or else that some computation contains
an error. (The Trail shown in the figure is explained in the next section.)

Fortunately, there is no need to examine the C source code of the verifier; you
simply perform these three steps within a script, or use JSPIN, which invokes
SPIN, the C compiler and the compiled verifier.

Fig. 2.1. The architecture of SPIN

Promela
program

Generation Verifier
(C)-

Compilation Verifier
(executable)-

Trail Report

?

Execution

?

jSpin
Select Verify. The commands that are executed are listed in the mes-
sage pane. The report of the verifier is displayed in the right pane.

2.2 Verifying a program in SPIN 25

Command line
Run SPIN with the argument -a to generate the verifier source code:

spin -a max.pml

Check your directory; you should find files pan.* including pan.c,
which contains the source code of the main program. (The file name
pan is historical and is derived from protocol analyzer.) The next step
is to compile this file; for the gcc compiler the command is:

gcc -o pan pan.c

Finally, run the verifier:

pan

You may need to enter this command as ./pan or .\pan.

Verify the program in Listing 1.6 for the maximum of two numbers; you
should get errors = 0. (For now, you can ignore the rest of the output.)

Next, verify the program in Listing 2.3 that contains an error; the report
will be:

pan: assertion violated
(((a>=b)) ? ((max==a)) : ((max==b))) (at depth 0)

pan: wrote max1.pml.trail
(Spin Version 4.2.8 -- 6 January 2007)
Warning: Search not completed

...
State-vector 24 byte, depth reached 2, errors: 1

...

SPIN does not bother to search the entire state space; instead, it stops as soon
as one assertion is violated because the existence of one counterexample is
usually sufficient to locate an error in the program or the correctness specifi-
cations.

Advanced: Continuing past the first error

The argument -e to pan causes trails for all errors to be created.
The argument -cN causes the verifier to stop at the Nth error rather
than the first, while the argument -c0 requests the verifier to ignore
all errors and not to generate a trail file.

26 2 Verification of Sequential Programs

2.2.1 Guided simulation

You may hope that your first attempt at verifying a model will succeed;
however, this is unrealistically optimistic! Almost invariably it takes a long
time to understand the interactions among components of the model, and
between the model and its correctness specifications, in order to achieve a
successful verification. Thus, a primary task of a model checker is to assist
the systems engineer in understanding why a verification has failed.

SPIN supports the analysis of failed verifications by maintaining internal
data structures during its search of the state space; these are used to recon-
struct a computation that leads to an error. The data required for reconstruct-
ing a computation are written into a file called a trail. (The name of the file
is the same as that of the PROMELA source code file with the additional ex-
tension .trail.) The trail file is not intended to be read; rather, it is used to
reconstruct a computation by running SPIN in guided simulation mode.

jSpin
After running a verification that has reported errors, select Trail .

Command line
After running a verification that has reported errors, run SPIN again
with the -t argument:

spin -t max.pml

An examination of the guided simulation for the program in Listing 2.3
will show that the bad computation actually occurs when the alternative
with the mistake (line 5) is executed:

Starting P with pid 0
0: proc - (:root:) creates proc 0 (P)

0 P 3 b>=a
0 P 5 max = (b+1)

As a check of your understanding of assertions, write the postcondition
for the program in Listing 1.7 that computes the greatest common denomi-
nator of two integer numbers; verify that the program is correct.

2.2.2 Displaying a computation

When examining a computation produced by a random or guided simula-
tion, we need more than the output that results from the print statements.

