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2.1 INTRODUCTION
In the first chapter we have seen some general examples of the protocol design prob-
lem. Having chosen a transmission medium, be it a torch telegraph or an optical fiber,
we have to write down a set of rules for its proper use, defining how messages are
encoded, how a transmission is initiated and terminated, and so on. Two types of
errors are hard to avoid: designing an incomplete set of rules, or designing rules that
are contradictory.

In this chapter we look at ways to make sure that the set of rules is both complete and
consistent. It requires us to be very precise in specifying all the relevant pieces of a
protocol. It also requires some discipline in separating orthogonal issues, using
modularity and structure.

Let us first look at the general types of services that a computer communications pro-
tocol must be able to provide. Assume we have two computers, A and B. A is con-
nected to a file store device d, and B connects to a printer p. We want to send a text
file from the file store at A to the printer at B.

pd A B

Figure 2.1 — File Server and Print Server

Obviously, to be able to communicate at all, the two machines must use the same phy-
sical wires, use compatible character encodings, and transmit and scan the signals on
the wires at roughly the same speed. But, assuming that those issues have been
resolved, there is still more to the problem than sending signals down a wire.
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20 PROTOCOL STRUCTURE CHAPTER 2

A must be able to check whether or not the printer is available. It must be able to
adapt the rate at which it is sending the characters to the rate at which the printer can
handle them. Specifically, the machine must be able to suspend sending when the
printer runs out of paper or is switched off line.

It is important to note that, even though the actual data flow in only one direction,
from A to B, we need a two-way channel to exchange control information. The two
machines must have reached prior agreement on the meaning of control information
and on the procedures used to start, suspend, resume, and conclude transmissions. In
addition, if transmission errors are possible, control information must be exchanged to
guard the transfer of the data. Typical control messages, for instance, are positive and
negative acknowledgments that can be used by the receiver to let the sender know
whether or not the data were received intact.

All rules, formats, and procedures that have been agreed upon between A and B are
collectively called a protocol . In a way, the protocol formalizes the interaction by
standardizing the use of a communication channel. The protocol, then, can contain
agreements on the methods used for:

Initiation and termination of data exchanges
Synchronization of senders and receivers
Detection and correction of transmission errors
Formatting and encoding of data

Most of these issues can be defined on more than one level of abstraction (Figure 2.2).
At a low level of abstraction, for instance, any synchronization concerns apply to the
synchronization of the sender’s and receiver’s clock that is used to drive or to scan the
physical transmission line. At a higher level of abstraction, it is concerned with the
synchronization of message transfers (for example, in flow control and rate control
methods), and at a still higher level it deals with the synchronization and coordination
of the main protocol phases.

At the lowest level a format definition can consist of a method for encoding bits with
analog electrical signals. One level up, it may consist of methods for encoding the
individual characters of a transmission alphabet into bit patterns. Next, character
codes can be grouped into message fields, and message fields into frames or packets,
each with a specific meaning and structure.

The error control methods required in a protocol depend on the specific properties of
the transmission medium used. This medium may insert, delete, distort, or even
duplicate and reorder messages. Depending on the specific behavior, the protocol
designer can devise an error control strategy.

The protocol descriptions we have discussed so far have been fairly informal and frag-
mented. Unfortunately, this is not unusual. It is all too tempting to rely on the
goodwill and common sense of the reader (or implementer) to fill in the details that
have been omitted, to understand the hidden assumptions, and to disambiguate the
language. A first step towards more reliable protocol design is to formalize and to
structure the descriptions, to make explicit all assumptions.
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message fields

frames/packets

electrical signal

bits

symbols/characters

Figure 2.2 — Sample Levels of Abstraction: Formatting
In the next section we begin this process by considering what the essential elements in
a protocol definition are.

2.2 THE FIVE ELEMENTS OF A PROTOCOL
A protocol specification consists of five distinct parts. To be complete, each specifi-
cation should include explicitly:

1. The service to be provided by the protocol
2. The assumptions about the environment in which the protocol is executed
3. The vocabulary of messages used to implement the protocol
4. The encoding (format) of each message in the vocabulary
5. The procedure rules guarding the consistency of message exchanges

The fifth element of a protocol specification is the most difficult to design and also
the hardest to verify. The larger part of this book is therefore devoted to precisely that
topic: the design and validation of unambiguous sets of procedure rules.

Each part of the protocol specification can define a hierarchy of elements. The proto-
col vocabulary, for example, can consist of a hierarchy of message classes. Similarly,
the format definition can specify how higher-level messages are constructed from
lower-level message elements, and so on.

As noted in Chapter 1, a protocol definition can be compared to a language definition:
it contains a vocabulary and a syntax definition (i.e., the protocol format); the
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22 PROTOCOL STRUCTURE CHAPTER 2

procedure rules collectively define a grammar; and the service specification defines
the semantics of the language.

There are some special requirements we have to impose on this language. Like any
computer language the protocol language must be unambiguous . Unlike most pro-
gramming languages, however, the protocol language specifies the behavior of con-
currently executing processes. This concurrency creates a new class of subtle prob-
lems. We have to deal with, for example, timing , race conditions , and possible
deadlocks. Since the precise sequence of events cannot always be predicted, the
number of possible orderings of events can be so overwhelming that it defeats any
attempt to analyze the protocol by simple manual case analysis.

The next section gives an informal example of the definition of the five protocol ele-
ments, and the types of errors that can linger in a design. Following that, we consider
each of the five main protocol elements in more detail. The chapter is concluded with
a discussion of protocol design techniques that can help to structure a design, so that it
ultimately can be implemented efficiently and proven correct with automated tools.

2.3 AN EXAMPLE
The following protocol was described by W.C. Lynch [1968] as

‘‘... a reasonable looking but inadequate scheme published by one of the major
computer manufacturers in a system information manual.’’

We discuss this protocol here to see how we can identify the basic building blocks in
a specification discussed above. Let us first consider the service specification.

SERVICE SPECIFICATION
The purpose of the protocol is to transfer text files as sequences of characters across a
telephone line while protecting against transmission errors, assuming that all
transmission errors can in fact be detected. The protocol is defined for full-duplex file
transfer, that is, it should allow for transfers in two directions simultaneously (see also
Appendix A). Positive and negative acknowledgments for traffic from A to B are sent
on the channel from B to A , and vice versa. Every message contains two parts: a mes-
sage part, and a control part that applies to traffic on the reverse channel.

ASSUMPTIONS ABOUT THE ENVIRONMENT
The ‘‘environment’’ in which the protocol is to be executed consists minimally of two
users of the file transfer service and a transmission channel. The users can be
assumed to simply submit a request for file transfer and await its completion. The
transmission channel is assumed to cause arbitrary message distortions, but not to
lose, duplicate, insert, or reorder messages. We will assume here that a lower-level
module (see Chapter 3) is used to catch all distortions and change them into undis-
torted messages of type err.
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PROTOCOL VOCABULARY
The protocol vocabulary defines three distinct types of messages: ack for a message
combined with a positive acknowledgment, nak for a message combined with a nega-
tive acknowledgment, and err for a message with a transmission error. The vocabu-
lary can be succinctly expressed as a set:

V = { ack, err, nak }.
Each message type can further be refined into a class of lower-level messages, con-
sisting for instance of one sub-type for each character code to be transmitted.

MESSAGE FORMAT
Each message consists of a control field identifying the message type and a data field
with the character code. For the example we assume that the data and control fields
are of a fixed size.

The general form of each message can now be represented symbolically as a simple
structure of two fields:

{ control tag, data }
which in a C-like specification may be specified in more detail as follows:

enum control { ack, nak, err };

struct message {
enum control tag;
unsigned char data;

};

The line starting with the keyword enum declares an enumeration type named
control with three possible values: one for each message type used. The message
structure itself contains two fields: a tag of type control, and a data field declared
as an unsigned character (one byte).

PROCEDURE RULES
The procedure rules for the protocol were informally described as follows:

‘‘1. If the previous reception was error-free, the next message on the reverse channel
will carry a positive acknowledgment; if the reception was in error it will carry a
negative acknowledgment.’’
‘‘2. If the previous reception carried a negative acknowledgment, or the previous
reception was in error, retransmit the old message; otherwise fetch a new message for
transmission.’’

To formalize these rules, we can use state transition diagrams, flow charts, algebraic
expressions, or program-form descriptions. In Chapters 5 and 6 we develop a new
language to describe procedure rules like these in protocol validation models. For the
time being, though, we can use simple flow charts, such as the one shown in Figure
2.3. An overview of the flow chart language is given in Appendix B.
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start

next:o

receive

ack:i

next:o

err:i

nak:o

nak:i

ack:o ack:o

Figure 2.3 — Lynch’s Protocol

The box labeled receive symbolizes a state in which the reception of a new message
from the channel is awaited. Depending on the type of message received, one of three
execution paths is then chosen. The dented box represents the recognition of a mes-
sage of the type that matches its label. The pointed box indicates the transmission of
a message with the corresponding type.

The box labeled next:o indicates an internal action to obtain the next data item (char-
acter) to be transferred. The data item is stored in variable o, which is used in the out-
put operations. For instance, ack:o sends data item o with a positive acknowledgment
of the last received message. Incoming data is stored in variable i.

As we might expect, there are some problems with this description that need to be
considered.

DESIGN FLAWS
First we have the problem that data transfer in one direction can only continue if data
transfer in the other direction also takes place. We could try to overcome this prob-
lem by having the processes use filler messages whenever no real data are to be
transferred.

Another problem that has to be solved before the protocol can be used is to decide
how a data transmission is to be initiated or concluded. The two procedure rules
specify normal data transfer, but not the setup and termination procedures.
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We can try to initiate the data transfer by having one of the two processes send a fake
error message. Note that if both parties are allowed to initiate the protocol in this
way, it is hard to bring the two processes into phase. To terminate the transfer when
the processes have ended up exchanging filler messages, however, requires extra con-
trol messages.

A more important deficiency of the protocol is that an essential operation has been
omitted from the specification. The receiver has to be able to decide whether or not a
data item that was received correctly, and temporarily stored in variable i, is to be
accepted (and, for instance, saved in a file). Correctly received duplicates of previ-
ously received messages should, of course, not be accepted again. This problem
seems to have no solution if we are to maintain the two procedure rules listed above.

Consider what can happen if every correctly received message is accepted, that is,
data appended to ack and nak messages is accepted, but data appended to err mes-
sages is not. The extension looks plausible enough but unfortunately does not solve
the problem. The following execution sequence, for instance, leads to the acceptance
of a duplicate message. First, process A initiates the transfer by sending a deliberate
error message to B . Assume that A attempts to transmit the characters a to z, and that
B responds by transmitting the characters in the reverse order, from z to a. Consider
then the sequence of events shown in the time sequence diagram of Figure 2.4. The
two solid lines in the figure track the executions of the two processes. The dotted
lines show successful message transfers. The dashed lines show message transfers
that are distorted by the channel. Two messages are distorted in this manner: a posi-
tive acknowledgment from A to B and a negative acknowledgment from B to A.

A

next

accept ’z’

accept ’z’
next

B
err. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

nak ’z’ ...............................

ack ’a’ → err

nak ’z’ → err

nak ’a’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ack ’z’ ...............................

ack ’b’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

next

accept ’a’

Figure 2.4 — Time Sequence Diagram

At the end of the sequence, when A receives the last message from B , it cannot tell
whether the message is new or an old duplicate. The nak message that contained this
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information was corrupted. In the example sequence, A erroneously accepts the mes-
sage.

It must be noted that, even though the protocol is simple, it is disproportionately hard
to discover the error. To assume that the error, if overlooked in the design phase, will
sooner or later reveal itself in practice would be naive. The error only occurs in the
rare event that two transmission errors occur in sequence. As Lynch observed:

‘‘Such errors, while rare, do occur, and their rareness will make it extremely difficult
to catch the flaw in the system. This inadequate scheme will work ‘almost’ all of the
time.’’

The example protocol is simple. The informal description is convincing, and based
on that description alone few would doubt the protocol’s correctness. Yet the
specification is incomplete, and any straightforward implementation allows subtle
errors during the exchange of the data. If anything, this example should convince us
that, even for the simplest of protocols, a good design discipline and effective analyti-
cal tools are indispensable.

In the next sections we return to the five elements of a protocol specification defined
in Section 2.2, and consider the corresponding structuring methods and design criteria
that we could use. First, in Section 2.4, we consider the structuring of service
specifications and the explicit assumptions that must be made about a protocol’s
environment. In Section 2.5, we look at the protocol vocabulary and data format, and
in Section 2.6 we talk in more detail about the issues involved in the design of proto-
col procedure rules.

2.4 SERVICE AND ENVIRONMENT
To accomplish a higher-level task like file transfer, a protocol must perform a range of
lower-level functions such as synchronization and error recovery. The specific reali-
zation of a service depends on the assumptions that are made about the environment
in which the protocol is to be executed. Error recovery, for instance, should correct
for the assumed behavior of the transmission medium. Particulars on the types of
assumptions one can make about transmission channels are given in Appendix A and
in Chapter 3. Here we concentrate on the structure of service specifications proper.

Common sense tells us that if a problem is too large to solve we must partition it into
subproblems that are either easier to solve or that have been solved before. Software,
and in particular protocol software, is then most conveniently structured in layers.
More abstract functions are defined and implemented in terms of lower-level con-
structs, where each layer hides certain undesirable properties of the communication
channel and transforms it into a more idealized medium.

As an example, assume we want to implement a data transmission protocol that pro-
vides for the encoding of characters into tuples of 7 bits each, and for some rudimen-
tary error detection scheme to protect the bytes against transmission errors, for
instance by the addition of one parity bit to each 7-bit byte. This protocol then pro-
vides two services: encoding and error detection. We can separate these two services
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into two functional submodules, an encoder and a parity module, and invoke them
sequentially. At the other end of the line, there will be a decoder and a parity checker.
For full-duplex transmission, we can conveniently combine the function of the
encoder and decoder into one module, say P 2 , and similarly we can combine the par-
ity adder and checker into a single module P 1 .

P 2 P 1 P 1 P 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
..
..
..
..
..
..
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
..
..
..
..
..
..
..
..
..
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .....................

Figure 2.5 — Building a Virtual Channel

Figure 2.5 illustrates the principle. The channel (the dashed line) is wrapped in two
layers. In effect, each layer provides a different service and implements a separate
protocol. The first layer implements the P 1 protocol; the second layer implements the
P 2 protocol. The data format of the P 2 protocol is a 7-bit byte. The data format of
the P 1 protocol is an 8-bit byte.

The P 2 protocol does not see and does not know about the eighth bit that is added to
its bytes. The only thing it cares about is that the channel its 7-bit bytes travel on is
more reliable than the raw channel at the lower level. The P 1 protocol provides a vir-
tual channel for the P 2 protocol, but is transparent to the P 2 protocol. The two key-
words are transparent and virtual. ‘‘Transparent’’ is something that exists but seems
not to. ‘‘Virtual’’ is something that seems to exist but does not.

To the P 1 protocol, any data format that is enforced by the P 2 protocol is invisible
(transparent). As far as P 1 is concerned, it is an uninterpreted sequence of data, of
which only the length is known. Similarly, neither the P 2 nor the P 1 protocol layer
knows anything about the format imposed by possible higher layers in the hierarchy
(e.g., a P 0 layer), or lower layers (e.g., P 3).

Pn P 2 P 1 P 0 P 1 P 2 Pn

n-th level envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.6 — Data Envelopes

As shown in Figure 2.6, each layer can enclose the data to be transmitted in a new
data envelope, consisting of a header and/or trailer, before passing it to the next layer.
The original data format from the upper layers need not even be preserved by the
lower layers. The data may well be divided up differently, in larger or in smaller por-
tions, as long as the original format can be restored by the receiving protocol module.

The principle of hierarchical design is well-known in sequential programming, but is
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relatively new for distributed systems. The advantages are clear:
A layered design helps to indicate the logical structure of the protocol by separat-
ing higher-level tasks from lower-level details.
When the protocol must be extended or changed, it is easier to replace a module
than it is to rewrite the whole protocol.

In 1980 the International Standards Organization (ISO) recognized the advantages of
standardizing a hierarchy of protocol services as a reference model for protocol
designers. The ISO recommendation defines seven layers, as illustrated in Figure 2.7.

. . . . . . . . .

transmission medium

Interface

data link layer

network layer

transport layer

session layer

presentation layer

application layer

physical layer

..

..

..

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.....

7

6

5

4

3

2

1

7

6

5

4

3

2

1

Figure 2.7 — ISO Reference Model for Open Systems Interconnection
The layers are listed below with a short descriptive phrase explaining their place in
the hierarchy.

1. Physical layer: transmission of bits over a physical circuit
2. Data link layer: error detection and recovery
3. Network layer: transparent data transfer and routing
4. Transport layer: user to user higher-level data transfer
5. Session layer: coordination of interactions in user sessions
6. Presentation layer: interpretation of user-level syntax

for instance for encryption or compression of data
7. Application layer: entry point for application processes

such as electronic mail or file transfer demons
The first layer contains all protocol functions that apply to the actual transmission of
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bits over a physical connection. It specifies, for instance, whether a connection is a
copper wire, a coaxial cable, a radio channel, or an optical fiber. The physical
medium could be a point-to-point channel, dedicated to communication between two
specific machines, or it could be a shared broadcast channel, such as the University of
Hawaii’s Aloha network, or an Ethernet link. All relevant properties of raw data
channels and of the modems that are used to drive them (see Appendix A) are defined
here. The first layer also defines the encoding of bits in, for instance, electrical, opti-
cal, or radio signals. It also defines and standardizes the mechanical requirements of
cables, switches, and connectors, including pin assignments and the like. The physi-
cal layer protocols hide all these details from the subsequent layers and transform the
physical line into a rudimentary data link.

The next three layers are the most important ones. Their relative function is illus-
trated in Figure 2.8. The boxes represent network nodes or hosts, the circles represent
user-level processes executing at these hosts, and the lines represent the logical con-
nections viewed at three different levels of abstraction.

The data link layer uses the service provided by the physical layer and transforms a
raw data link into a reliable one by adding error handling. It connects two hosts, pos-
sibly but not necessarily hosts that function as nodes in a network (see Figure 2.8). It
transmits the data in blocks (frames) and can provide for the multiplexing of indepen-
dent data streams over a single data link. It may provide a flow control service to
guarantee that frames can only be received from the link in the precise order in which
they were sent, despite channel errors. Protocols that operate on the data link level are
known as link-level protocols.

The network layer takes care of typical network functions, such as the addressing and
routing of messages. It can try to avoid bottlenecks in the network by using adaptive
routing schemes, or it can try to reduce congestion in the network with rate control
methods. The network layer provides the means to set up and release network con-
nections, potentially spanning multiple data links, or hops, through the network, e.g.,
from node A to node B in Figure 2.8.

q p
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B A

Transport Layer

Network Layer

Data Link Layer

Figure 2.8 — Relative Function of Three Layers

The transport layer connects user-level processes, such as p and q in Figure 2.8,
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transparently through a network. Network and transport layer protocols are some-
times called end-to-end protocols, and data link protocols are called hop-by-hop.
Either the network or the transport layer may provide a flow control service, which is
now called end-to-end, instead of the hop-by-hop flow control that can be imple-
mented at the data link layer. It can, in fact, make quite a difference which of these
two types of flow control is used (see Chapter 4, Rate Control).

Each layer in the hierarchy defines a distinct service and implements a different proto-
col. The format used by any specific layer is largely independent of the formats used
by the other layers. The network layer, for instance, sends data packets, the data link
layer casts them into frames, and the physical layer translates them into byte or bit
streams. The receiver decodes the raw data on layer 1, interprets and deletes the
frame structure on layer 2, so that layer 3 can again recognize the packet structure.
The format enforced by the lower layers is transparent to the higher layers.

Officially the model sketched above is called the ISO Reference Model of Open Sys-
tems Interconnection. It has, however, quickly become known as ISO’s OSI model.

The first layers of the OSI model are the most frequently used. A layer 1 protocol was
standardized by the CCITT1 as Recommendation X.21. The recommendation for the
second layer is largely based on the HDLC protocol we mentioned earlier (see Section
2.5, Bit Stuffing). The first three OSI layers together are defined in CCITT Recom-
mendation X.25. The X.25 protocol defines the interaction of a computer, or DTE for
data terminal equipment in CCITT terminology, and a network link, or DCE for data
circuit terminating equipment. Computer-to-computer interaction is not defined until
the fourth layer in the OSI reference model: the transport layer. A well-known tran-
sport layer protocol is the Transmission Control Protocol (TCP) that was standardized
by the U.S. Department of Defense. The corresponding network layer protocol is
called the Internet Protocol (IP).

__________________
1. Comite ´ Consultatif International Te ´ le ´ graphique et Te ´ le ´ phonique.
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entity
peer

A B
peer

protocol
. . . . . . . . . . . . . . . . .

service service
provided primitives

interface

Layer N

N + 1

N − 1

Figure 2.9 — Protocol Layering

The precise functions performed on each layer of the OSI model and the definition of
the X.25 protocol are of little interest to us here (see Bibliographic Notes). More
important is the structuring method itself. Software layering is a design principle that
can be powerful when used properly, but it defeats its purpose when carried to
extremes.

A layer defines a level of abstraction in the protocol, grouping closely related
functions and separating them from orthogonal ones. By decoupling layers, future
changes made in one layer need not affect the design of the other layers. The
correct choice of the required levels of abstraction necessarily depend on the
specific protocol being designed.
An interface separates distinct levels of abstraction. A correctly placed interface is
small and well-defined. A badly placed interface causes unnecessary complexity,
it causes code duplication, and it may degrade performance.

Figure 2.9 illustrates the main concepts of a layering technique. The protocol func-
tions on the N-th layer form a logical entity. In the model they are referred to as peer
entities. By convention the vertical boundary between two adjacent layers is called an
interface, and the horizontal boundary between two entities in different systems is
called a peer protocol. Since the local implementation details of the layer interfaces
can easily be hidden from the environment, only the peer protocols must be standard-
ized among systems.

The interface between two adjacent layers is defined as a collection of service access
points implemented by the lower layer and available to the higher layer. The informa-
tion to be exchanged is formatted incrementally by the various layers in data units or
data envelopes. In sequence, the information is passed from the sender down from
the highest layer used, to the physical layer, transmitted via the actual physical circuit
from system to system, and interpreted step by step while being passed up the proto-
col hierarchy again to the highest layer used by the receiver.
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In this framework, we can recognize the first two elements of the five-part protocol
specification discussed in this section

the service to be provided by the protocol, and
the assumptions made about its environment

as formal specifications of the upper and lower interface of a given protocol layer.
The service is provided to the upper layer protocols, or to the user at the top layer.
The assumptions made are assumptions about the services provided by the lower layer
protocols. At the lowest protocol layer these assumptions concern the bare service
provided by the physical transmission medium, i.e., an optical fiber, a copper wire, or
a torch telegraph.

The protocol hierarchy is an excellent example of the application of design discipline.
Design issues are separated from one another and solved independently. The prob-
lems of error control, error recovery, addressing and routing, flow control, data
encryption etc., can be solved step by step in a disciplined manner. From a designer’s
point of view, though, it is not predetermined that every design problem is always
best subdivided as suggested in Figure 2.7. The specifics of the protocol system and
the environment in which it is executed determine how a design problem can best be
decomposed into smaller problems.

2.5 VOCABULARY AND FORMAT
We first look, on a fairly low level of abstraction, at some protocol formatting
methods. These formats must underly all higher-level structures, for example, the
structures that are used to encode the protocol message vocabulary. The three main
formatting methods are:

Bit oriented
Character oriented
Byte-count oriented

BIT ORIENTED
A bit-oriented protocol transmits data as a stream of bits. To allow a receiver to
recognize where a message (a frame) starts and ends in the bit stream, a small set of
unique bit patterns, or flags, is used. Of course, these bit patterns can be part of the
user data too, so something has to be done to ensure that they are always interpreted
properly. If a framing flag, for instance, is defined as a series of six one bits enclosed
in zeros, 01111110, series of six adjacent ones in the user data must be intercepted.
This can be done by inserting an extra zero after every series of five ones in the user
data.
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user data framing flag framing flag

0 1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0

Figure 2.10 — Bit Stuffing

The receiver can now correctly detect the structure enforced by the flags in the bit
stream by inspecting the first bit after every series of five ones: if it is a zero it must be
deleted, else the pattern being scanned must be part of a true frame delimiter. This bit
stuffing technique is used in ISO’s layer 2 protocol (see Section 2.6) for High Level
Data Link Control, HDLC, which is in turn based on IBM’s Synchronous Data Link
Control protocol, SDLC. Once the basic low-level flag structure is in place, it can be
used to support higher-level structures.

CHARACTER ORIENTED
In a character-oriented protocol some minimal structure is enforced on the bit stream.
If the number of bits per character is fixed to n bits (typically 7 or 8), all communica-
tion takes place in multiples of n bits. These data units are then used to encode both
user data and control codes. Examples of control codes are the ASCII2 start of text
STX and end of text ETX messages that can serve as delimiters and can be used to
enclose the user data.

DLE DLE DLE DLE

delimiter delimiter user data

STX, DLE, STX, ETX, ... ETX STX
. . . . . . . . . . . . . . . . . . ..

..

..

. . . . . . . . . . . . . . . . . . . ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
..
..
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... . . . . . . . . . . . . . . . . . . ..

..

..

. . . . . . . . . . . . . . . . . . . .......

Figure 2.11 — Character Stuffing

Again, if raw data are transmitted (for example, binary object code), care must be
taken that the delimiters do not accidentally occur in the user data. In IBM’s Bisync
protocol, for instance, every control character, such as STX and ETX, is preceded by
an extra code, the data link escape character DLE. If any control message, such as
STX, ETX, or even DLE itself, happens to occur literally in the user data, it is preceded
by an extra DLE character. The DLE code is interpreted by the receiver as a control
code that turns off any special meaning of the first character that follows it. The
receiver deletes the first DLE code that it sees in the character stream, and passes on
the following character uninterpreted. Only if the special meaning of an STX or ETX
code is not suppressed by a preceding DLE character is it interpreted as a delimiter.
__________________
2. American Standard Code for Information Interchange.
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The technique is called character stuffing.

Figure 2.11 shows where the DLE codes would be inserted in a stream that consists of
four subsequent control characters in the user data.

BYTE-COUNT ORIENTED
The flags of a bit-oriented protocol and the control characters of a character-oriented
protocol are used to structure a raw data stream into larger fragments. One reason for
such structuring is to indicate to a receiver where a data stream begins and ends. In
byte-count oriented protocols a slightly different method is chosen. In a known place
after the STX control message, the sender includes the precise number of bytes (char-
acters) that the message contains. An ETX message is now superfluous, and tech-
niques such as bit stuffing or character stuffing are no longer needed. Most protocols
in use today are of this type. A specific example is DEC’s Digital Data Communica-
tion Message Protocol, DDCMP.

HEADERS AND TRAILERS
With the basic structuring methods we have discussed above, more systematic
higher-level data formatting methods can be built. So far we have silently assumed
the absence of transmission errors. If a byte-count field is distorted, or a DLE charac-
ter is lost, these techniques fail. In the absence of an error detection and error
recovery strategy, therefore, the techniques are of little use.

As we will see in more detail in Chapter 3, error detection schemes require transmis-
sion of redundant information, typically in the form of a checksum. If flow control
techniques are added, for instance to detect loss or reordering of text frames, a
sequence number field is appended. If more than one type of message is used we
further have to include an indication of the type of message being transferred. And
then, if we are transmitting redundant information anyway we might as well add other
potentially useful data such as the name of the sender or the priority of the message.

All this overhead is most conveniently grouped into separate structures that encapsu-
late the user data: a mere STX control message thus expands into a header structure,
and similarly the simple ETX grows into a composite message trailer.

For obvious reasons, byte counts are typically placed in message headers and check-
sums are placed in the trailer. The message format may then be defined as an ordered
set of three elements:

format = { header, data, trailer }.
The header and trailer again define ordered subsets of control fields, which may be
defined as follows:

header = { type, destination, sequence number, count },
trailer = { checksum, return address }.

The length of the data field is defined by the last field in the header. The destination
and the return address can again be defined by substructures.
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Figure 2.12 — Message Format
The type field can be used to identify the messages that make up the protocol vocabu-
lary. Depending on the particular structure of the protocol vocabulary, this field can
be refined still further.

2.6 PROCEDURE RULES
Up to this point, we have stressed the similarity of the protocol design task and nor-
mal software development. It is time to look at one of the differences. An important
aspect of the protocol design problem is that the procedure rules are interpreted con-
currently by a number of interacting processes. The effect of each new rule we add to
the set is often much larger than can be foreseen. Many different interleavings in time
of the interpretation of these rules by the various processes will be possible. Precisely
because of this concurrency a protocol behavior is not always reproducible. To con-
vince ourselves of the correctness of a design we need something better than informal
reasoning. The most popular tool for reasoning about protocols, unfortunately, is the
time sequence diagram, like the one used in Figure 2.4. To be sure, the time sequence
diagram is convenient for reporting a single known error. But it is woefully inade-
quate for reasoning about the working of a protocol in general. To allow this we
must, at least, be able to express behavior unambiguously in a convenient formal
notation. Transition tables, or formal finite state machines (see Chapter 8), for
instance, can be used for this purpose. In addition, we must be able to express arbi-
trary correctness requirements on the behaviors that we specify (see Chapters 5 and
6).

There is no general methodology that can guarantee a priori the design of an unambi-
guous set of procedure rules (we discuss this in more detail in Chapter 10). There are,
however, tools with which we can, even automatically, verify the logical consistency
of the rules (see Chapter 11) and the observance of the correctness requirements.
And, of course, there is common sense and plain good engineering practice that can
help us to keep the protocol rules manageable. We look at some of those issues in the
next section.

2.7 STRUCTURED PROTOCOL DESIGN
Protocol design touches on a broad range of issues. Some of these issues are well
understood; others we are only beginning to understand. Protocol design is partly an
engineering problem that can be addressed by the application of well-known tech-
niques. At the physical layer of the ISO hierarchy, for instance, we know precisely
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what the characteristic behaviors of different types of information carriers are, how
fast we can transmit data on them and what the resulting average bit error rate will be.

There are various techniques for encoding binary data into the analog signals that can
be carried by the various media, and there are well-known techniques for synchroniz-
ing transmitters and receivers at this level. We do not have to reinvent and revalidate
those techniques for each new protocol, and indeed they can be considered so stan-
dard that we need not discuss them in this book. For the interested reader, the details
are included in Appendix A.

Much higher up in the protocol hierarchy, we face problems of network design: rout-
ing data through networks, the precise dimensioning of network structures, the inter-
connection of multiple networks with gateways, and the development of higher-level
disciplines for congestion control and congestion avoidance. In between this high
level network view and the low level view of transmission codes and data carriers
there is a large unknown territory, where there are few techniques that can help us
through the design process. There is still a range of well-known error control and
flow control techniques that can be used to build reliable data links, but this is only
where real protocol design problem begins: the actual problem of devising unambigu-
ous and complete sets of rules for the exchange of information in a distributed system.

Before this ‘‘gray area’’ of protocol design can become a true engineering discipline,
it has to be established what the principal design tools are, what rules are to be fol-
lowed, and what mistakes are to be avoided.

The development of a new engineering discipline often happens in two phases. In the
first phase, the new technology is explored, and the designers seek tools that restrict
them as little as possible in their exploration of its possibilities. If difficulties are
encountered the capability of the tools is expanded to allow the user to cope with the
growing set of problems. The trend in this first phase, then, is to remove constraints
rather than to impose them.

In the second phase, after a better understanding of the nature of the problems
develops, a new set of tools appears. These tools deliberately impose a carefully
selected set of constraints upon the user. These constraints are meant to enforce a
design discipline that is based upon the history of mistakes, collectively called
‘‘experience,’’ from the first development phase. In protocol design we are still wait-
ing to make the transition to the second phase of development. Below we discuss
some central concepts in the new design discipline for protocols that is emerging.

A designer will adhere to the discipline only if in return, provably and reproducibly, a
more reliable product can be obtained. Below we give an overview of what is likely
to become part of a general set of principles of sound design, which will allow us to
enter the second phase of development in the field of protocol engineering. It is
important to recognize that all these notes are variations on two common themes: sim-
plicity and modularity.
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SIMPLICITY — THE CASE FOR LIGHT-WEIGHT PROTOCOLS
A well-structured protocol can be built from a small number of well-designed and
well-understood pieces. Each piece performs one function and performs it well. To
understand the working of the protocol it should suffice to understand the working of
the pieces from which it is constructed and the way in which they interact. Protocols
that are designed in this way are easier to understand and easier to implement
efficiently, and they are more likely to be verifiable and maintainable. A light-weight
protocol is simple, robust, and efficient. The case for light-weight protocols directly
supports the argument that efficiency and verifiability are not orthogonal, but comple-
mentary concerns.

MODULARITY — A HIERARCHY OF FUNCTIONS
A protocol that performs a complex function can be built from smaller pieces that
interact in a well-defined and simple way. Each smaller piece is a light-weight proto-
col that can be separately developed, verified, implemented, and maintained. Orthog-
onal functions are not mixed; they are designed as independent entities. The indivi-
dual modules make no assumptions about each other’s working, or even presence.
Error control and flow control, for instance, are orthogonal functions. They are best
solved by separate light-weight modules that are completely unaware of each other’s
existence. They make no assumptions about the data stream other than what is strictly
necessary to perform their function. An error-correction scheme should make no
assumptions about the operating system, physical addresses, data encoding methods,
line speeds, or time of day. Those concerns, should they exist, are placed in other
modules, specifically optimized for that purpose. The resulting protocol structure is
open, extendible, and rearrangeable without affecting the proper working of the indi-
vidual components.

WELL-FORMED PROTOCOLS
A well-formed protocol is not over-specified, that is, it does not contain any unreach-
able or unexecutable code. A well-formed protocol is also not under-specified or
incomplete. An incompletely specified protocol, for instance, may cause unspecified
receptions during its execution. An unspecified reception occurs if a message arrives
when the receiver does not expect it or cannot respond to it.

A well-formed protocol is bounded: it cannot overflow known system limits, such as
the limited capacity of message queues.

A well-formed protocol is self-stabilizing. If a transient error arbitrarily changes the
protocol state, a self-stabilizing protocol always returns to a desirable state within a
finite number of transitions, and resumes normal operation. Similarly, if such a proto-
col is started in an arbitrary system state, it always reaches one of the intended states
within finite time.

A well-formed protocol, finally, is self-adapting. It can adapt, for instance, the rate at
which data are sent to the rate at which the data links can transfer them, and to the rate
at which the receiver can consume them. A rate control method, for instance, can be
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used to change either the speed of a data transmission or its volume.

ROBUSTNESS
As Polybius (Chapter 1) noted,

‘‘it is chiefly unexpected occurrences which require instant consideration and help.’’

It is not difficult to design protocols that work under normal circumstances. It is the
unexpected that challenges them. It means that the protocol must be prepared to deal
appropriately with every feasible action and with every possible sequence of actions
under all possible conditions. The protocol should make only minimal assumptions
about its environment to avoid dependencies on particular features that could change.
Many link-level protocols that were designed in the 1970s, for instance, no longer
work properly if they are used on very high speed data lines (in the Gigabits/sec
range). A robust design automatically scales up with new technology, without requir-
ing fundamental changes. The best form of robustness, then, is not over-design by
adding functionality for anticipated new conditions, but minimal design by removing
non-essential assumptions that could prevent adaption to unanticipated conditions.

CONSISTENCY
There are some standard and dreaded ways in which protocols can fail. We list three
of the more important ones.

Deadlocks — states in which no further protocol execution is possible, for
instance because all protocol processes are waiting for conditions that can never
be fulfilled.
Livelocks — execution sequences that can be repeated indefinitely often without
ever making effective progress.
Improper terminations — the completion of a protocol execution without satisfy-
ing the proper termination conditions.

In general, the observance of these criteria cannot be verified by a manual inspection
of the protocol specification. More powerful tools are needed to prevent or detect
them. Such tools are discussed in Part III.

2.8 TEN RULES OF DESIGN
The principles discussed above lead to ten basic rules of protocol design.
1. Make sure that the problem is well-defined. All design criteria, requirements and

constraints, should be enumerated before a design is started.
2. Define the service to be performed at every level of abstraction before deciding

which structures should be used to realize these services (what comes before how).
3. Design external functionality before internal functionality. First consider the

solution as a black-box and decide how it should interact with its environment.
Then decide how the black-box can internally be organized. Likely it consists of
smaller black-boxes that can be refined in a similar fashion.

4. Keep it simple. Fancy protocols are buggier than simple ones; they are harder to
implement, harder to verify, and often less efficient. There are few truly complex
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problems in protocol design. Problems that appear complex are often just simple
problems huddled together. Our job as designers is to identify the simpler prob-
lems, separate them, and then solve them individually.

5. Do not connect what is independent. Separate orthogonal concerns.
6. Do not introduce what is immaterial. Do not restrict what is irrelevant. A good

design is ‘‘open-ended,’’ i.e., easily extendible. A good design solves a class of
problems rather than a single instance.

7. Before implementing a design, build a high-level prototype (Chapters 5 and 6) and
verify that the design criteria are met (Chapters 11 to 14).

8. Implement the design, measure its performance, and if necessary, optimize it.
9. Check that the final optimized implementation is equivalent to the high-level

design that was verified (Chapter 9).
10. Don’t skip Rules 1 to 7.
The most frequently violated rule, clearly, is Rule 10.

2.9 SUMMARY
A protocol includes more than an agreement on the meaning of signals for data.
Minimally, the protocol must include agreements on the use of control information,
which is needed to standardize the use of the channel itself.

To be complete, the definition of a protocol should include the five main elements
listed in Section 2.2. Protocol failures are often caused by hidden assumptions about
events or about the possible sequences of events. It is the responsibility of the proto-
col designer to make these assumptions explicit. Again: it is not sufficient if a correct
interpretation of the specification is merely possible. It is required that no incorrect
interpretation is possible.

The main protocol structuring techniques are the layering of control software and the
structuring of data. The OSI model is given as an example of this approach. Beware,
it is not a recipe. Similarly, the ten rules of design are guidelines, not command-
ments. A structured and sound approach to the design of consistent procedure rules
must always be a self-imposed discipline.

In the next two chapters we first cover the basics of protocol design, the known tech-
niques for building reliable channels out of unreliable ones. The remainder of the
book is devoted to the study of the protocol design problem itself. It does not discuss
network design issues, nor the specific encoding or usage of the protocol standards
that are in use today. Instead, our goal is to discuss how protocols can be designed
using a simple discipline based on the rules given above.

EXERCISES
2-1. 2-1. Identify the five protocol elements from Section 2.2 for the torch telegraph of Polybius,

discussed in Chapter 1. List at least three cases of incompleteness in the protocol.
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2-2. 2-2. Give an informal description of the procedure rules of a protocol that manages the data
transfer from a file server to a printer (Section 2.1). Make sure that the protocol can
recover when the printer runs out of paper or is switched off line.

2-3. 2-3. Explain what the equivalents of control and data messages are in a telephone call. Write
down a complete (Section 2.2) protocol specification for a phone call, taking into account
all possible signals and exception conditions. Consider the case where two people try to
call each other simultaneously and consider the best procedure rules for redialing after a
busy signal.

2-4. 2-4. Extend Lynch’s protocol to avoid the duplication error, and show with a rigorous argu-
ment that the revised version works.

2-5. 2-5. Explain why a byte count is most conveniently placed in a message header (Section 2.5).

2-6. 2-6. Explain the difference between bit stuffing and character stuffing.
2-7. 2-7. Calculate the optimal length for a framing flag in a bit oriented protocol. Note that a

longer series of ones in the framing flag reduces the probability of its occurrence in the
user data and thus the overhead in the number of stuffed bits, at the expense of a higher
overhead in the framing flag itself. Assume random user data. (See Bertsekas and Gal-
lager [1987, p. 78-79]).

2-8. 2-8. In your favorite programming language, write a function that performs STX — ETX fram-
ing and character stuffing on an arbitrary byte stream. Provide the matching receive
function and test it.

BIBLIOGRAPHIC NOTES
That control messages are vital to a reliable operation of communication lines was
already known in the days of the pre-electric telegraphs. Even the torch telegraph had
a start of text message, and most later systems had at least special control codes for
repeat and wait. The same control signals are defined on nearly every data link in use
today. Hubbard [1965], reports yet another type of control message, devised by ‘‘an
anonymous French inventor’’ for an early electro-static telegraph system. He sug-
gested using the static charge of the telegraph line to ignite a small amount of gun-
powder in the receiving station to wake a sleeping attendant.

The system described by Marland [1964] wins the prize for the best control messages
ever devised. It noted a telegraphic system that was described in the Mechanics’
Magazine of June 11, 1825 (Vol. IV, p.148). In this system the electro-static shocks
are administered directly to the operator. And, if that is not enough, it suggests a most
original solution to the problem of a drowsy telegraph operator:

‘‘Let the first shock pass through his elbows, then he will be quite awake to attend the
second.’’

Excellent introductions to the problems of protocol design can be found in Pouzin and
Zimmerman [1978] and in Merlin [1979]. The formalism for describing protocols as
an abstract language, with vocabulary, formal grammar, and syntax was introduced in
Puzman and Porizek [1980].

Perhaps the greatest importance of the paper by Lynch [1968] is that it sparked a

www.spinroot.com



CHAPTER 2 BIBLIOGRAPHIC NOTES 41

famous paper by Bartlett, Scantlebury, and Wilkinson from the National Physical
Laboratory in England, defining one of the simplest and best known protocols in use
today: the alternating bit protocol. We discuss it in Chapter 4.

The symbols used in the flow chart in Figure 2.3 are from the CCITT specification
language SDL. The language is quickly gaining popularity as a specification method
for communication protocols. For an overview see, for instance, Rockstrom and
Saracco [1982] and SDL [1987]. The official SDL language definition is in CCITT
[1988]. The flow charting ‘‘language’’ used here is more fully described in Appendix
B. The best reference to the C language, referred to briefly in Section 2.3, is Ker-
nighan and Ritchie [1978, 1988].

The principal ideas of structured programming and software layering stem from E.W.
Dijkstra [1968a, 1968b, 1969a, 1969b, 1972, 1976] and N. Wirth [1971, 1974]. They
are closely related to the technique of design by stepwise refinement Wirth [1971], see
also Gouda [1983]. That the principle of stepwise refinement was known long before
program design became an issue is illustrated by the following quote from E.F.
Moore.

‘‘One way of describing what engineers do in designing actual machines is to say that
they start with an overall description of a machine and break it down successively into
smaller and smaller machines, until the individual relays or vacuum tubes are
ultimately reached.’’ (Moore [1956])

The ideas on protocol design expressed here are also inspired by discussions with
many others, most notably Jon Bentley, John Chaves, Peter van Eijk, Rob Pike, and
Chris Vissers. The importance of the service concept in protocol design is eloquently
explained in Vissers and Logrippo [1985].

The term self-stabilization was also coined by Dijkstra, see for example, [1974,
1986], see also Kruijer [1979]. Lamport discussed self-stabilization in several papers,
Lamport [1984, 1986]. Multari wrote his thesis on self-stabilizing protocols, Multari
[1989]. Other pioneering work in this area is done at the University of Texas at Aus-
tin by M.G. Gouda [1987] and at Cornell University by G.M. Brown [1989].

The study of light-weight protocols was pioneered in the 1970s by a research group at
the Computer Laboratory of the University of Cambridge, involved with the design of
the Cambridge Ring Network, e.g., Needham and Herbert [1982], and a little later by
a group at AT&T Bell Labs, including Sandy Fraser, Greg Chesson, and Bill
Marshall, involved with the design of the hardware and software for the Datakit®
switch.

The term light-weight protocol was coined by the Cambridge group, who also
developed the first serious contender in this class: the byte stream protocol that is
used on the Cambridge Ring. The work at Bell Labs led ultimately to the design of
the standard Universal Receiver Protocol (URP), Fraser and Marshall [1989], and its
successors the PSP and MSP packet switch protocols.

A complete description of the OSI model can be found in ISO [1979]. The X.25
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protocol, finally, is documented in CCITT [1977] and explained in, for instance,
Lindgren [1987], and Stallings et al. [1988]. More about data networking problems
can be found in Tanenbaum [1981, 1988] or in Stallings [1985].
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