
FLOW CONTROL 4
66 Introduction 4.1

70 Window Protocols 4.2
74 Sequence Numbers 4.3

80 Negative Acknowledgments 4.4
83 Congestion Avoidance 4.5

86 Summary 4.6
87 Exercises

88 Bibliographic Notes

4.1 INTRODUCTION
The simplest form of a flow control scheme merely adjusts the rate at which a sender
produces data to the rate at which the receiver can absorb it.1 More elaborate schemes
can protect against the deletion, insertion, duplication, and reordering of data as well.
But let us first look at the simpler version of the problem. It is used

To make sure that data are not sent faster than they can be processed.
To optimize channel utilization.
To avoid data clogging transmission links.

The second and the third goals are complementary: sending the data too slowly is
wasteful, but sending data too fast can cause congestion. The data path between
sender and receiver may contain transfer points with a limited capacity for storing
messages shared between several sender-receiver pairs. A prudent flow control
scheme prevents one such pair from hogging all the available storage space.

In this chapter we build up a full flow control discipline in a sequence of modifica-
tions of a simple, basic model. The procedure rules of these protocols are specified
with the flow charting language introduced in Chapter 2 and summarized in Appendix
B. The notation mesg:o in an input or output statement, for instance, indicates that a
message of type mesg with data field o is received or sent, respectively. The state-
ment next:o indicates the internal retrieval of data item o to be transmitted in the next
output message. Similarly, accept:i indicates the acceptance (storage) of i as correctly
received data.

Figure 4.1 illustrates a protocol without any form of flow control. Note that it is a
simplex protocol: it can be used for transfer of data in only one direction (see Figure
2.1 and Appendix A).

1. At the lowest level such synchronization must already take place to drive a physical line. See Syn-
chronous and Asynchronous Transmission in Appendix A.

66

www.spinroot.com

67

sender

next:o

mesg:o

receiver

receive

mesg:i

accept:i

Figure 4.1 — No Flow Control
The protocol in Figure 4.1 only works reliably if the receiver process is guaranteed to
be faster than the sender. If this assumption is false, the sender can overflow the input
queue of the receiver. The protocol violates a basic law of program design for con-
current systems:

Never make assumptions about the relative speeds of concurrent processes.

The relative speed of concurrent processes depends on too many factors to base any
design decisions on it. Apart from that, the assumption about the relative speed of
sender and receiver is often not just dangerous but also invalid. Receiving data is
generally a more time-consuming process than sending data. The receiver must inter-
pret the data, decide what to do with it, allocate memory for it, and perhaps forward it
to the appropriate recipient. The sender need not find a provider for the data it is
transmitting: it does not run unless there are data to transfer. And, instead of allocat-
ing memory, the sender may have to free memory after the data are transmitted, usu-
ally a less time-consuming task. Therefore, the bottleneck in the protocol is likely to
be the receiver process. It is bad planning to assume that it can always keep up with
the sender.

The oldest and least reliable flow control technique that can be used to address this
synchronization problem requires no prior negotiation between sender and receiver
about the pace at which messages can be transmitted. The method uses two control
messages: one to suspend and one to resume traffic. The messages are sometimes
called x-off and x-on.2 Assume, then, that we have an error-free channel and a proto-
col vocabulary of the following three message types:

V = { mesg, suspend, resume }

2. The control-s and control-q codes on many data terminals provide the same two functions.

www.spinroot.com

68 FLOW CONTROL CHAPTER 4

where the control messages suspend and resume are used to implement the flow con-
trol discipline. The procedure rules of the protocol can now be added. We implement
them here with two additional processes, one in the sender and one in the receiver, as
shown in Figure 4.2.

sender

next:o

state==go

mesg:o

toggle

receive

suspend

state=wait

resume

state=go

Figure 4.2 — X-on/X-off Protocol: Sender Processes
After receiving a suspend message, the toggle process in the sender sets the value of a
variable state to wait. It resets the variable to its initial value go after the arrival of a
resume message. The sender process simply waits (at the oval box) until state has the
proper value before transmitting the next message.3 3. Recall that the oval box indi-
cates a potential delay. The process waits for a message to arrive when the box is
labeled receive, or else it waits until the condition specified becomes true. Cf. Figure
2.1.

The receiver is also split into two parts. After the arrival of a data message a counter

www.spinroot.com

69

counter/buffer

receive

mesg:i

mesg:i

n++

n>max
false

receiver

receive

mesg:j

accept:j

n––

n<min
falsetrue

suspend

true

resume

Figure 4.3 — X-on/X-off Protocol: Receiver Processes
process increments a variable n, and upon the acceptance of the message, an acceptor
process decrements it. The data messages are passed from the counter process to the
acceptor process via an internal queue. The count remembers the number of messages
that have been received from the sender and the number that are waiting to be
accepted by the receiver. If its value increases beyond some predefined limit, a
suspend message is sent to the sender. If it drops below a lower bound, the resume
message is sent, as shown in Figure 4.3. To split the receiver into two processes, of
course, only makes sense if accept is a relatively time-consuming operation.

There are some problems to be resolved. The correct working of the protocol depends
on the properties of the transmission channel. If a suspend message is lost or even
delayed, the overflow problem recurs. The working of a protocol should not depend
on the time it takes a control message to reach the receiver. Worse still, if a resume
message is lost, the four-process system comes to a complete halt.

We have these two problems to solve:
Protect against overrun errors in a more reliable way.
Protect against message loss.

A standard method of solving the first problem is to let the sender explicitly wait for
the acknowledgment of transferred messages. An example is the Ping-Pong protocol
of Figure 4.4. This method is often called a stop and wait protocol. The overflow
problem has disappeared, but the system still deadlocks if either a control or a data
message is lost. The sender and receiver are too tightly coupled. Let t be the message

www.spinroot.com

70 FLOW CONTROL CHAPTER 4

sender

next:o

mesg:o

receive

ack

receiver

receive

mesg:i

accept:i

ack

Figure 4.4 — Ping-Pong Protocol
propagation time on the channel, a the time it takes the receiver to process and accept
an incoming message, and p the time it takes the sender to prepare a message for
transmission. With the above scheme the sender incurs a delay of 2t + a − p units of
time for every message transmitted.

Typically p < a and, obviously, t increases at least linearly with the distance between
sender and receiver. Note, however, that the acknowledgment message does not just
signify the arrival of the last message, it is also used as a credit that the receiver
extends to the sender to transmit the next message. This idea directly leads to a solu-
tion that can alleviate the delay problem: the window protocol.

4.2 WINDOW PROTOCOLS
In a call-setup phase, the receiver can tell the sender exactly how much buffer space it
is prepared to reserve for incoming messages. The sender is then given credit for a
fixed number of outstanding messages. The credit can be updated dynamically when
the amount of available buffer space changes.

Let us not worry about message loss just yet and first look at the basic working of a
window protocol. Each message received is acknowledged with a single ack control
message on a return channel. All we have to do is to keep count of the number of
messages in transit.

The initial credit can either be negotiated, or it can be set to a fixed number of mes-
sages W. For each message sent the sender decrements its credit, and for each mes-
sage received the receiver extends a new credit to the sender via the return channel.

www.spinroot.com

SECTION 4.2 WINDOW PROTOCOLS 71

The example protocol shown in Figure 4.5 illustrates this. The quantity W − n gives
the number of unused credits.

sender

n<W
true

next:o

n++

mesg:o

false

receive

ack

n − −

receiver

receiver

mesg:i

accept:i

ack

Figure 4.5 — Window Protocol for an Ideal Channel

Let a(t) be the number of credit messages received by the sender at time t after initial-
ization, let m(t) be the number of messages sent to the receiver, and let n(t) be the
value of n at time t. The maximum number of messages that the sender can have out-
standing, waiting acknowledgment, is

W − n(t) + m(t)− a(t)

where W − n(t) is the number of unused credits and m(t)− a(t) the number of used
credits. We would like to convince ourselves that

W − n(t) + m(t)− a(t)≤W

or

m(t)− a(t)≤n(t)

Initially all variables in this inequality are zero and the condition is trivially true.
Every send action in the sender increments both sides of the inequality, right side
first, and preserves its validity. Similarly, with every receive action the receiver pro-
cess decrements both sides by one, the left side first, again preserving the correctness.

MESSAGE LOSS
The maximum credit W is called the window size of the protocol. During a transfer,
the current credit varies between zero and W, depending on the relative speeds of

www.spinroot.com

72 FLOW CONTROL CHAPTER 4

sender and receiver. The sender is only delayed when the credit is reduced to zero.
This flow control discipline can optimize communication on channels with long tran-
sit delays by enabling the sender to transmit new messages while waiting for the ack-
nowledgment of old ones.

The problems of lost, inserted, duplicated, or reordered messages do, of course, still
exist. If, for instance, a set of acknowledgment messages is lost, both parties may
hang: the sender waiting for the acknowledgments that were lost, the receiver waiting
for the messages it credited.

TIMEOUTS
To protect against the loss of essential messages the sender has to keep track of
elapsed time. In the Ping-Pong protocol of Figure 4.4, for instance, the sender can try
to predict the worst turn-around time for each acknowledgment. If the response has
not arrived within that period, the sender can time out and assume that it was lost.

In practice, the ‘‘worst’’ turn-around time is often calculated with a heuristic:

T worst = T
_

+ N .√� �����var(T)

where T is the round-trip delay N is usually one, and rarely larger than two. The
round-trip delay is simply the time it takes a message to go from sender to receiver
plus the time it takes a response to return to the sender (see Exercise 4-12). T

_
and

var(T) are, respectively, the average and the variance of T. The factor N is thus a
multiplication factor for standard deviation of the turn-around time (the square root of
the variance).

In many cases, the behavior of the receiver process at the far end of a transmission
channel can be modeled by an M/M/1 queueing system.4 We then assume that, from
the receiver’s point of view, the distribution function of the interarrival times of mes-
sages is a Poisson process and the distribution time for the processing of these mes-
sages is a simple exponential function. For an M/M/1 queueing system, it can be
shown that the variance of the time spent in the system is the square of the mean.
This means that for our transmission channel the variance of both the one-way and the
round-trip delay is also the square of the mean, var(T) = T

_2
. This leads to the sim-

ple rule of thumb that an approximation for the retransmission time can be obtained
by doubling the average round-trip delay T (assuming a factor N = 1 in the above esti-
mate:

T worst ∼∼ 2.T
_

A timeout after a deletion error certainly looks straightforward. A common mistake,
however, is to let both the sender and the receiver use timeouts. Consider the exten-
sion of the Ping-Pong protocol shown in Figure 4.6.

4. The notation is due to D.G. Kendall [1951].

www.spinroot.com

SECTION 4.2 WINDOW PROTOCOLS 73

sender

next:o

mesg:o

receive

ack

timeout

receiver

receive

mesg:i

accept:i

ack

timeout

Figure 4.6 — Ping-Pong Protocol with Timeouts

sender

next

timeout

next

next

receiver

timeout

accept

accept

mesg

mesg.

ack mesg.

ack

Figure 4.7 — Time Sequence Diagram of An Error
Figure 4.7 shows what can happen with this protocol if a deletion error occurs. Both
sender and receiver decide to retransmit the last sent message when a deletion error is
assumed. When the first ack message reaches the sender, it cannot possibly tell
whether it acknowledges the lost or the retransmitted message. The sender ends up
matching the wrong ack and mesg messages indefinitely.

One lesson to be learned from this is that sender and receiver should not both be able
to initiate retransmissions. It is sufficient to place this responsibility with one of the
two processes. Traditionally, this is the sender process, since only the sender can

www.spinroot.com

74 FLOW CONTROL CHAPTER 4

know for certain when new data has been sent. Another lesson is that we must be able
to tell from an acknowledgment exactly which message is being acknowledged, even
if we only intend to send one message at a time, as in the Ping-Pong protocol. We
can do this by adding sequence numbers to each data and control message. By doing
so, we also obtain a mechanism for solving other classes of transmission problems in
a fairly straightforward way: duplication errors and out-of-sequence messages.

Since sequence numbers necessarily have a restricted range ,5 we must have a way to
verify that recycled numbers cannot disturb the correct working of the protocol. We
will see below that if sequence numbers are used in combination with a window pro-
tocol this requirement can be fulfilled relatively easily. Before we make that combi-
nation, the sliding window protocol, let us take a closer look at the use of timeouts
and sequence numbers.

4.3 SEQUENCE NUMBERS

A0_ __

B1A0_ __

B0

A1_ __

B0 A1_ __

B1

A1

A0

B0_ __

A0 B0_ __

A1

B1_ __

B1_ __

Figure 4.8 — Original Alternating Bit Protocol
As an example of a better use of a timeout, and a one-bit sequence number, we can
consider an extended version of the alternating bit protocol (a famous protocol, see
the Bibliographic Notes). The protocol continues to surface in so many different dis-
guises in the protocol literature that it is worthwhile to first look at the original specif-
ication from Bartlett, Scantlebury and Wilkinson [1969]. In their paper, the protocol
is defined with two finite state machines of six states each, as shown in Figure 4.8.
The original protocol, therefore, can be in no more than 36 different states, substan-
tially fewer than all other variations that have been studied.

Figure 4.8 specifies the behavior of two processes, A and B. The notation is from
Bartlett, Scantlebury and Wilkinson [1969]. The edge labels specify the message
exchanges. Each label consists of two characters. The first specifies the origin of the
message being received or transmitted, and the second specifies the sequence number,

5. There is only a finite number of bits to store them in the message headers.

www.spinroot.com

SECTION 4.3 SEQUENCE NUMBERS 75

called the alternation bit in the original paper. Send actions are underlined.

The double headed arrows indicate states where input is to be accepted in the receiver
or where a new message is fetched for output in the sender. Erroneous inputs, i.e.,
messages that carry the wrong sequence number, prompt a retransmission of the last
message sent. It is relatively easy to extend the protocol with timeouts to allow for
recovery from message loss. A flow chart version of this extension is shown in Fig-
ure 4.9.

sender

next:o

mesg:o:s

receive

ack:r

r==s

true

s=1–s

timeout

false

receiver

receive

mesg:i:a

ack:a

a==e

true

e=1–e

accept:i

false

Figure 4.9 — Alternating Bit Protocol with Timeouts

We have used two types of messages, mesg and ack, with, for instance, the format
{ mesg, data, sequence number }

and
{ ack, sequence number }

respectively. In the flow chart, mesg:o:s indicates a message mesg with data field o
and sequence number field s.

We have also used four single-bit variables: a, e, r, and s. Variable s is used by the

www.spinroot.com

76 FLOW CONTROL CHAPTER 4

sender to store the last sequence number sent, and r holds the last sequence number
received. The receiver uses e to hold the next number expected to arrive and variable
a to store the last actual sequence number received. All variables have an initial value
zero.

Figure 4.10 illustrates what happens if the deletion error from Figure 4.7 occurs in the
alternating bit protocol. The protocol recovers from the error when the sender process
times out and retransmits the lost message.

sender

next

timeout

next

receiver

accept

mesg

mesg.ack

Figure 4.10 — Time Sequence Diagram of Error

Consider also what happens if an acknowledgment is delayed long enough for the
sender to time out and retransmit the last message (see Exercise 4-6).

MESSAGE REORDERING
Now let us consider the duplication and reordering of messages, as may happen in, for
instance, datagram networks where messages can travel along different routes to their
destination. The obvious solution is to encode the original order of the messages in a
larger sequence number that is attached to each message. With a 16-bit field for the
sequence numbers we can number 65,536 subsequent messages. Assuming a message
length of 128 bits and an effective line speed of 9600 bps (bits per second), we could
run out of numbers within 15 minutes. Fortunately, this range problem readily disap-
pears if we limit the maximum number of messages that can be in transit at any one
time: the sender’s credit. Clearly, the range of the sequence numbers has to be larger
than the maximum credit used so that a receiver can always distinguish duplicate mes-
sages from originals.

Assume a range M of available sequence numbers and an initial credit of W messages.
We assume for the time being that M is sufficiently larger than W to avoid confusion
of recycled sequence numbers. The sender must do some bookkeeping for every out-
standing message within the current window. We use two arrays for this purpose.
Boolean array element busy[s] is set to true if a message with sequence number s was
sent and has not yet been acknowledged. The second array store[s] remembers the
last message with sequence number s that was transmitted. Initially, all elements of
array busy are set to true.

www.spinroot.com

SECTION 4.3 SEQUENCE NUMBERS 77

There are many problems to solve to get this version of the window protocol to work.
The task can be split into three subtasks: transmitting messages, processing ack-
nowledgments, and retransmitting messages that remain unacknowledged for too
long. In addition to the constants W and M, the following four variables are used, all
with an initial value of zero:

s, the sequence number of the next message to send
window, the number of outstanding unacknowledged messages
n, the sequence number of the oldest unacknowledged message
m, the sequence number of the last acknowledged message

transmission
process

window<W

next:o

window++
busy[s]=true
store[s]=o

mesg:o:s

s=(s+1)%M

retransmission
process

window>0

busy[n]

true

timeout

mesg:
store[n]:n

false

window− −
n=(n+1)%M

acknowledgement
process

receive

ack:m

busy[m]=
false

Figure 4.11 — Sender Processes, Sliding Window Protocol

First consider the transmission process in Figure 4.11. As long as all credits have not
been used up, messages can be transmitted. Each message transmitted increments the
number of outstanding messages, and by doing so, it implicitly decrements the credit
for the transmission of new messages. A sequence number s is assigned, the message
contents are stored in store[s] for possible retransmission later, the flag is set in

www.spinroot.com

78 FLOW CONTROL CHAPTER 4

busy[s], and s is incremented modulo the range of the sequence numbers M (using the
‘%’ operator).

The acknowledgment process is even simpler. It receives the incoming acknowledg-
ments and sets the busy[m] flag to false. The order in which these acknowledgments
are received is irrelevant.

The retransmission process waits until there are messages in transit by checking that
window is non-zero. Each message that is sent must ultimately be acknowledged and
have its busy[n] flag reset to false. The retransmission process waits for this to hap-
pen at the second wait clause. If it does, the window size is decremented, and n is
incremented to point to the next oldest unacknowledged message. If the busy flag is
not reset to false within a finite amount of time, the retransmission process times out
and retransmits the message. The oval box delays the process until the condition
specified becomes true or, as in the current case, until a timeout occurs (cf. Appendix
B). The way we have specified it here, the retransmission timer repeats just one mes-
sage, the oldest unacknowledged message.

The receiver for the sliding window protocol is given in Figure 4.12. It is split into
two processes. One process receives and stores the incoming messages in whatever
order they may happen to arrive. A second process accepts and acknowledges the
messages, using the sequence numbers to restore their proper order. Messages cannot
be acknowledged until they are accepted, to avoid the risk of running out of buffers to
store messages if the accepting process turns out to be slower than the sender. We use
a boolean array recvd[M] to remember the sequence numbers of messages that have
been received, but not yet accepted, and an array buffer[M] to remember the contents
of those messages. There is one extra variable to keep track of the protocol’s pro-
gress: p, the sequence number of the next message to be accepted. It has an initial
value of zero.

The accept process is straightforward. It waits for the received flag of the next mes-
sage to be accepted to become true, accepts and acknowledges the message, and
increments p. The receiver checks whether a newly arrived message is an original or
a duplicate. For a new message, the received flags are set, and the message is stored
in array buffer. Two flags must be updated, one for the message that was just
received and one for a message that we now know can no longer be received because
it is outside the current window (see Exercise 4-14.)

recvd[m] = true

and

recvd[(m −W + M) %M] = false

or equivalently

recvd[(m −W) %M] = false

A duplicate message is recognized by the fact that the received flag was set to true

www.spinroot.com

SECTION 4.3 SEQUENCE NUMBERS 79

receiver
process

receive

mesg:i:m

recvd[m]false

set flags
buffer[m]=i

true

valid(m)

true

ack:m

false

accept
process

recvd[p]

accept
buffer[p]

ack:p

p=
(p+1)%M

Figure 4.12 — Receiver Processes, Sliding Window Protocol
before. There are two possible reasons for the arrival of a duplicate message:

The message was received, but not yet acknowledged.
The message was received and acknowledged, but the acknowledgment
somehow did not reach the sender.

Only in the second case should the acknowledgment be repeated. The current value
of variable p should be sufficient to figure out which of the two cases applies. If the
sequence number count was not modulo M, the test would simply be:

valid(m) = m < p

since only values smaller than p were acknowledged before. Taking the modulo M
effect into account (p is always smaller than M), this becomes:

valid(m) = (0 < p −m≤W) ⎪ ⎪ (0 < p + M −m≤W)

The window protocol guarantees that a retransmitted message cannot have a sequence
number that is more than W smaller than the last message that was acknowledged.

www.spinroot.com

80 FLOW CONTROL CHAPTER 4

The only case, then, where we can have m > p or p −m > W is when p has wrapped
around the maximum M, and m has not.

MAXIMUM WINDOW SIZE
If M is the range of the sequence numbers, what is the maximum number of outstand-
ing messages W that we can use and still guarantee that the window protocol works
properly? If all messages that arrive out of order were simply rejected by the receiver,
the answer would be M − 1. As long as a sequence number is not recycled before the
last message using it is acknowledged, all is well. This means that if messages may
be received out of order, as in Figure 4.12, the window size cannot exceed M /2 (cf.
Exercise 4-9).

As an example, consider the following case. Let H be the highest sequence number
(modulo M) that the receiver has read and acknowledged. It signifies to the receiver
that the sender has at least processed an acknowledgment for the W-th message
preceding the one numbered H (observation 1). The receiver also knows that at best
the sender has processed all acknowledgments up to and including the one for the
message numbered H (observation 2).

Observation 1 means that the sender may decide to retransmit any one of the W − 1
messages preceding H, and H itself. The oldest message that could be retransmit-
ted would carry sequence number (H −W + 1) %M.
Observation 2 means that the sender may also transmit up to W of the messages
that succeed the message numbered H. The first W − 1 of these messages may
even be lost on the transmission channel so that the message with number
(H + W) %M is the first new message to arrive.

The highest-numbered message that may succeed H must be distinguishable from the
lowest-numbered message that may be retransmitted preceding sequence number H.
This means M > 2W − 1, or a maximum window size of W = M /2.

4.4 NEGATIVE ACKNOWLEDGMENTS
So far, we have used acknowledgments as a method of flow control, not of error con-
trol. If a message is lost or damaged beyond recognition, the absence of a positive
acknowledgment would cause the sender eventually to time out and retransmit the
message. If the probability of error is high enough, this can degrade the efficiency of
the protocol, forcing the sender to be idle until it can be certain that an acknowledg-
ment is not merely delayed, but is positively lost. The problem can be alleviated,
though not avoided completely, with the introduction of negative acknowledgments.

The negative acknowledgment is used by the receiver whenever it receives a message
that is damaged on the transmission channel. How the receiver may be able to estab-
lish that is discussed in Chapter 3. When the sender receives a negative acknowledg-
ment, it knows immediately that it must retransmit the corresponding message,
without having to wait for a timeout. The timeout itself is still needed, of course, to
allow for a recovery from messages that disappear on the channel.

Figures 4.13 and 4.14 show an extension of the alternating bit protocol from Figure

www.spinroot.com

SECTION 4.4 NEGATIVE ACKNOWLEDGMENTS 81

sender

next:o

mesg:o:s

receive

timeout err nak ack:r

r==s
false

true

s=1–s

Figure 4.13 — Sender, Extended Alternating Bit Protocol
4.9 with negative acknowledgments. In this simple case, the nak needs no sequence
number. (See also Exercise 4-3.)

TERMINOLOGY
The method of using acknowledgments to control the retransmission of messages is
usually referred to as an ARQ method, where ARQ stands for Automatic Repeat
Request. There are three main variants:

Stop-and-wait ARQ
Selective repeat ARQ
Go-back-N continuous ARQ

The Ping-Pong protocol of Figure 4.4, possibly extended with negative acknowledg-
ments, classifies as a stop-and-wait ARQ. After each message is sent, the sender must
wait for a positive or a negative acknowledgment, or perhaps a timeout.

The use of acknowledgments in the sliding window protocol of Figures 4.11 and 4.12
is a selective repeat ARQ method. In Figure 4.11 implemented a ‘‘one-at-a-time’’
selective repeat method where only the oldest unacknowledged message is retransmit-
ted. In general, however, any message that triggers either a negative acknowledgment
or a timeout may be retransmitted, independently of any other outstanding message.

www.spinroot.com

82 FLOW CONTROL CHAPTER 4

receiver

receive

mesg:i:a

ack:a

a==e
true

e=1–e

accept:i

false

err

nak

Figure 4.14 — Receiver, Extended Alternating Bit Protocol

The generalized method is called ‘‘continuous’’ selective repeat.

The last strategy, go-back-N continuous ARQ, could be implemented in the above pro-
tocol by having the sender retransmit the corrupted message and all subsequently sent
messages. In that case the design of the receiver can be simplified. The accept pro-
cessor from Figure 4.12, for instance, can now be deleted and the buffer becomes
superfluous. In a go-back-N discipline the receiver refuses to accept all messages that
arrive out of order, and waits for them to arrive in the proper sequence. It will not
acknowledge any out-of-order messages. An acknowledgment with sequence number
s can now be understood to acknowledge all messages up to and including s. Such an
acknowledgment is therefore sometimes called a cumulative acknowledgment.

BLOCK ACKNOWLEDGMENT
A variation that can be used with the selective repeat and the go-back-N strategy to
reduce the number of individual acknowledgment messages that must be sent from
receiver to sender is known as block acknowledgment. In this case each positive ack-
nowledgment can specify a range of sequence numbers of messages that have been
received correctly. The block acknowledgment can be sent periodically or at the
sender’s request. Block acknowledgment can be seen as an extended form of cumula-
tive acknowledgment.

www.spinroot.com

SECTION 4.5 CONGESTION AVOIDANCE 83

4.5 CONGESTION AVOIDANCE
At the start of this chapter we gave two main reasons for the inclusion of flow control
schemes in protocols: synchronization and congestion avoidance.

Up to this point we have mostly ignored congestion avoidance and focused on end-
to-end synchronization. One important issue in particular has not been discussed yet:
For a given data link, how is the actual window size and the corresponding range of
sequence numbers chosen? It is relatively easy to set an upper limit on the window
size: at some point increasing it can no longer improve the throughput if the channel
is already fully saturated.

Assume it takes 0.5 seconds for a message to travel from sender to receiver, and
another 0.5 seconds for the acknowledgment to come back to the sender. The sender
can then fully saturate the channel if it can keep sending data for 1 second. If the data
rate of the channel is S bps the sender should be able to transmit S bits before it needs
to check for acknowledgments. If there are M bits in each message that is transmitted,
the best window size is trivially S/M. And, of course, we had better make certain that
M<S. A larger window size than S/M is wasteful: by the time the last message in the
current window is transmitted, the acknowledgment for the oldest outstanding mes-
sage should have arrived, and if it has not, it may be time to start considering the
retransmission of that message.

There is a danger in the type of calculation we have performed here. It reduces the
flow control problem to a link-level issue, while ignoring the network that contains
the data link. Consider, for example, the two-hop data link shown in Figure 4.15.

Sender
1 Mbps Transfer

Point
10 Kbps

Receiver

Figure 4.15 — Two-Hop Link

There are two ways of defining a flow control protocol for transfers from the sender to
the receiver in this two-link network:

Hop-by-hop (also called node-to-node)
End-to-end

In a hop-by-hop protocol, the window size is calculated separately for each link to try
to saturate each one. The first link is 100 times faster than the second. But if we
succeed in saturating both channels we have only succeeded in creating a bigger prob-
lem. Data arrive at the transfer point about 100 times faster than they can be passed
on to the receiver. No matter how much buffer space the transfer point initially has, it
eventually runs out of space, and unless it can throttle down the sender, it will start
losing messages.

The only way the transfer point can control the sender is to refuse to acknowledge
messages. The sender, however, tries to saturate the channel and will do so, either

www.spinroot.com

84 FLOW CONTROL CHAPTER 4

with retransmissions or with new data. If the number of acknowledgments drops, the
sender will continue to saturate the channel by retransmitting data.

A flow control scheme, then, must be designed to optimize the utilization of two
separate resources:

The buffer space in the network nodes
The bandwidth of the links connecting the nodes

The simple scheme above fails on both counts: it wastes buffer space in the transfer
point, thereby potentially blocking other traffic that may be routed through that node,
and it wastes bandwidth by triggering a deluge of retransmissions on the link from the
sender to the transfer point. Optimal use of the two-link data path can only be
achieved if the sender offers data at the data rate of the slowest link in the path: just
1% of the saturation point of the first link, which implies some type of feedback
scheme from the second link back to the first.

In an end-to-end protocol this problem does not exist. The end-to-end capacity of the
network path equals the capacity of the slowest link, and the window size can be set
accordingly. The problem is that in a complicated network there is no hope that a
sender can easily predict where the slowest link in its path to the receiver will be. The
safest thing to do would be to derive a maximum window size for the whole network
that is based on its slowest link. But that is hardly an inspiring solution, not to men-
tion a wasteful one. Furthermore, in a larger network the capacity of a data link
depends not just on the hardware but also on the number of competing users. If ten
users start transferring large files over the fastest link in the network, that link can
suddenly become the slowest one for all other users.

Going back to the original problem, even though we have pretended otherwise up to
this point, flow control is not a static problem, but a dynamic one. In a static flow
control protocol a sender always assumes that a message was either lost or distorted if
its acknowledgment does not arrive with the round-trip message delay time. The
appropriate response of the sender, in that case, is to retransmit the message. It can,
however, also mean that the network is overloaded. The appropriate response of the
sender is then to reduce the amount of traffic it offers to the network. The simplest
method the sender has for doing this is to decrease its window size.

DYNAMIC FLOW CONTROL
A dynamic window flow control method makes the protocol self-adapting, one of the
principles of sound design we listed in Chapter 2. A simple and commonly used
method is to force a sender to decrease its window size whenever a retransmission
timeout occurs. Once the timeouts disappear, the sender can be allowed to gradually
increase the window size back to its maximum value. There are different philoso-
phies about the precise parameters to be used in such a technique. Three popular vari-
ations are listed below.

Decrease the window by one for every timeout that occurs, and increase it by one
for every positive acknowledgment.
Decrease the window to half its current size upon every timeout, and increase it by

www.spinroot.com

SECTION 4.5 CONGESTION AVOIDANCE 85

one message for every N positive acknowledgments received.
Decrease to its minimum value of one, immediately when a timeout occurs, and
increase the window by one for every N positive acknowledgments received.

All methods assume a minimum window size of one. The maximum size can be cal-
culated as before, or it can be set to a heuristic value, such as the number of hops on
the link through the network between sender and receiver. The heuristic guarantees
that in normal operation every intermediate node stores just one message per connec-
tion.

With all three techniques it is assumed that the protocol by default uses its pre-
calculated maximum window size. The slow start protocol developed by Van Jacob-
son also removes that assumption: the protocol starts with the minimum window size
of one, and only starts increasing the effective window size once the first acknowledg-
ment has been received. In the slow start protocol the round-trip delay is continu-
ously measured, and it, rather than the retransmission timeout, is used as a measure
for increasing or decreasing the window size.

RATE CONTROL
With the dynamic window flow control schemes above, we have touched upon more
specific network design issues, which are outside the range of this book. From a net-
work operator’s point of view, the best congestion avoidance technique is to control
the amount of traffic that enters the network under overload conditions, rather than
attempting to minimize the damage for the traffic that has already been accepted, for
instance, with timeouts and retransmissions. These methods are collectively called
rate control methods. Figure 4.16 shows a well-known throughput versus traffic load
chart that illustrates the need for rate control.

SaturationThroughput

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

Offered Load

Knee

Figure 4.16 — Network Congestion

Ideally, the throughput of the network increases linearly with the offered load until it
is fully saturated. In practice, network control algorithms eat away a little from the
network capacity and a somewhat lower throughput is realized. Close to the satura-
tion point, a growing offered load leads to an increasing degradation of service caused
by the network congestion. The effect is comparable to a busy high-way where traffic

www.spinroot.com

86 FLOW CONTROL CHAPTER 4

slowly comes to a complete standstill under peak loads. Congestion, then, is usually
defined as a condition in the network where an increase in traffic load causes a
decrease in throughput. The best point at which to operate the network is to the left of
the dashed line in Figure 4.16, by controlling the offered load directly with, for
instance, a rate control method. In some studies it was found that the optimal point is
at the knee of the curve in Figure 4.16: the saturation point of the network under ideal
conditions. Optimization is then interpreted as the maximization of throughput
divided by measured round-trip message delay.

Rate control and flow control can be applied independently of one another. A stan-
dard rate control method is to give the sender a permit to offer data to the network at a
specific average number of bytes per second. It can specify two parameters:

The average data rate R in bytes per second
The averaging interval that is used to calculate R

In the XTP protocol (see the Bibliographic Notes to Chapter 2) a third parameter is
used:

The maximum data burst rate
Rate control is important as an efficiency and network control issue. It cannot, how-
ever, affect the logical consistency of a protocol definition, which is the primary focus
of this book.

4.6 SUMMARY
Problems such as the ones we have discussed in this chapter have been discovered in
many real-life protocols, and protocol designers will continue to be confronted with
them over and over again. We have presented them here in their most basic form, to
identify where the potential design flaws are.

Flow control and error control are often hard to distinguish. A flow control scheme
can be used to coordinate the rate of transmission of messages between the processes
in a distributed system. It can be used to avoid bottlenecks, and to recover from
transmission errors. The strategies we have explored include the use of timeouts, the
extension of messages with sequence numbers, and the use of positive and negative
acknowledgments. A logical extension of static window flow control mechanism is
dynamic window flow control. It allows protocols to become self-adapting, a princi-
ple of sound design. Flow control methods can be used to solve a variety of prob-
lems. They can be used in an end-to-end protocol to synchronize a sender and a
receiver. They can be used in link level protocols to optimize buffer management and
bandwidth utilization. Finally, they can be used as specific congestion avoidance
techniques to match the capacity of a sender to the capacity of the network that carries
the traffic.

Throughout this chapter we have assumed that a receiver process can establish
whether incoming messages should be acknowledged and accepted, or should be
rejected due to transmission errors. Refer to Chapter 3 to see how this can be

www.spinroot.com

CHAPTER 4 EXERCISES 87

accomplished.

EXERCISES
4-1. 4-1. Describe in detail the conditions under which an X-on/X-off protocol and a Ping-Pong

(stop-and-wait) protocol can fail.
4-2. 4-2. Consider the adequacy of the alternating bit protocol under message loss, duplication,

and reordering.
4-3. 4-3. Change the extended alternating bit protocol from Figures 4.13 and 4.14 by also sending

a negative acknowledgment when a message is received with the wrong sequence
number. Show precisely what can go wrong.

4-4. 4-4. Extend the X-on/X-off protocol for full-duplex transmissions. Consider the extra prob-
lems that the loss of control messages can now cause.

4-5. 4-5. Show what happens if the timeout period in the alternating bit protocol is not chosen
correctly.

4-6. 4-6. If the acknowledgment message in the alternating bit protocol is delayed long enough to
trigger the sender’s timeout, a duplicate mesg from the sender is created, which in turn
triggers a duplicate ack message, and so on. How would you change the protocol to
solve this problem?

4-7. 4-7. Describe your favorite traffic control problem (for example, grid lock, right of way prob-
lems, traffic circles) as a protocol problem.

4-8. 4-8. Two divisions of an army are encamped to the south and to the north of a guerrilla force
that is slightly stronger than either of the two divisions separately. Together, however,
the two divisions can launch a surprise attack and defeat their adversaries. The problem
for them is to coordinate their plans such that neither will mistakenly attack alone. It is
decided beforehand that division A will notify division B of the plan for attack by sending
a messenger. The messenger, though, must pass guerrilla-held territory to reach his goal.
This ‘‘communication channel’’ between A and B is expected to have a substantial loss
rate, and at least a potential for message distortion and insertion. Assume that message
distortion can be dealt with by using proper encoding techniques. There is a flow control
problem caused by the disappearance and reappearance of detained messengers. It is
decided that to confirm the safe arrival of a messenger from A to B a second messenger
will be sent from B to A with an acknowledgment. But, when can division B be sure that
its acknowledgment arrived? The acknowledgment has to survive the same channel
behavior as the original message. Therefore, the acknowledgment must itself be ack-
nowledged. But in that case, the acknowledgment of acknowledgments would have to
continue ad infinitum. What is the flaw in this reasoning? (This is a ‘‘folk’’ problem in
protocol theory; for instance, see Bertsekas and Gallager [1987, pp. 28-29.]).

4-9. 4-9. In a sliding window protocol where messages are not accepted out of order, show what
can happen when the window size W equals to the range of the sequence numbers M (see
Figure 4.11).

4-10. 4-10. Show how you can reduce the dimensions of all four arrays in the protocol of Figure 4.11
to the maximum window size.

www.spinroot.com

88 FLOW CONTROL CHAPTER 4

4-11. 4-11. Consider the following problem on a channel that can reorder messages. A message with
sequence number N is sent and acknowledged by the receiver, but the acknowledgment
suffers a very long delay in the channel. A timeout occurs, and the message numbered N
is retransmitted. The new acknowledgment overtakes the old one. The window of the
sliding window protocol advances, and after it has advanced one full cycle, a new mes-
sage with sequence number N is transmitted. By this time, the old acknowledgment
finally makes it back to the sender and is confused for a new acknowledgment for the last
message sent. Can you devise a solution to this problem?

4-12. 4-12. An alternative method for the calculation of a retransmission timeout, used in the TCP
protocol, is based on the following formula Stallings [1985, p. 508], Zhang [1986], Karn
and Partridge [1987]: β .(α .T

_
+ (1 − α) .T last), where T last is the last observed round-trip

delay. Compare this method with the one given in this chapter. Explain the effect of
parameters α and β.

4-13. 4-13. The original alternating bit protocol, shown in Figure 4.8, is only partially specified.
Provide the missing pieces.

4-14. 4-14. Consider in detail what might happen if, in Figure 4.12, recvd[p] would be reset to false
in the accept process immediately after an acknowledgment is sent.

BIBLIOGRAPHIC NOTES
The ‘‘alternating bit protocol,’’ introduced in this chapter, is one of the simplest, best
documented, and most thoroughly verified protocol designs. It was first described in
a paper by three people from the National Physical Laboratory in England, Bartlett,
Scantlebury and Wilkinson [1969], in response to an article by W.C. Lynch [1968].
Variations of the NPL protocol are still popular as a litmus test for new protocol vali-
dation and specification methods. Cerf and Kahn [1974] first extended the alternating
bit protocol into a go-back-N sliding window protocol. The selective repeat strategy
is due to Stenning [1976]. The block acknowledgment strategy was first described in
Brown, Gouda, and Miller [1989].

A general introduction to flow control techniques can be found in, for instance,
Pouzin [1976], Tanenbaum [1981, 1988], or Stallings [1985]. An excellent survey
and comparison of flow control techniques was published in Gerla and Kleinrock
[1980]. An early attempt at rate control is described in Beeforth et al. [1972]. It dis-
tinguishes between two types of acknowledgment: one acknowledges to the sender
that a message was correctly received and need not be retransmitted, and another sig-
nals to the sender that the buffer space occupied by that message was released (e.g.,
because the packet was forwarded), and that the window of sequence numbers can
advance a notch.

Various versions of Figure 4.16 have been published over the years. It is discussed in
detail in, for instance, Gerla and Kleinrock [1980] and Jain [1986].

The XTP, or Express Transfer Protocol is described in Chesson [1987]. The protocol
was designed to survive applications in high speed data networks. It is promoted by
the company ‘‘Protocol Engines,’’ founded by Greg Chesson. Other important work
on protocols for high-speed data networks is reported in Clark [1985], and Clark,

www.spinroot.com

CHAPTER 4 BIBLIOGRAPHIC NOTES 89

Lambert and Zhang [1988]. Dynamic window flow control methods are described in,
for instance, Gerla and Kleinrock [1980], Jain [1986]. Jacobson’s slow start protocol
is described in Jacobson [1988].

More on the choice of timeout intervals for network protocols can be found in Zhang
[1986] and Karn and Partridge [1987]. For an introduction to general network control
issues refer to McQuillan and Walden [1977], Tanenbaum [1981, 1988], Cole [1987],
or Stallings [1985, 1988].

www.spinroot.com

