
1 © O. Bonaventure, 2008CNP3/2008.3.

How to improve the alternating bit protocol ? (2)

● Modifications to alternating bit protocol

- Sequence numbers inside each segment
● Each data segment contains its own sequence number
● Each control segment indicates the sequence number of the

data segment being acknowledged (OK/NAK)

- Sender
● Needs enough buffers to store the data segments that have

not yet been acknowledged to be able to retransmit them if
required

- Receiver
● Needs enough buffers to store the out-of-sequence

segments, but this is optional (see Go-Back-N).

2 © O. Bonaventure, 2008CNP3/2008.3.

Remember protocol 1 ? It was pipelined

A B

Data.request(a) Segment(a)

Data.ind(a)Data.request(b) Segment(b)

Data.ind(b)Data.request(c) Segment(c)

Data.ind(c)

3 © O. Bonaventure, 2008CNP3/2008.3.

How to improve the alternating bit protocol ? (3)

We want the best of two worlds : pipelining + feedback loop.
● Issue ?
● What happens if the receiver is much slower than the sender ?

● e.g. receiver can process one segment per second while sender is
producing 10 segments per second ?

● How to avoid an overflow of the receiver’s buffers ?

A B

Data.request(a) Segment(1,a)

Data.ind(a)Data.request(b) Segment(2,b)

Data.ind(b)Data.request(c) Segment(3,c)

Data.ind(c)

a

 BUFFERs Usage

 BUFFERs Usage

 BUFFERs Usage

a

BUFFERs usage

ba

b c

b

BUFFERs usage

c

BUFFERs usage

Ack 3

Ack 2

Ack 1

4 © O. Bonaventure, 2008CNP3/2008.3.

Sliding window

● Principle
- Sender keeps a list of all the segments that it is allowed to

send
● sending_window

- Receiver also maintains a receiving window with the list of
acceptable sequence number

● receiving_window

- Sender and receiver must use compatible windows
● sending_window ≤receiving window

● For example, window size is a constant for a given protocol or negotiated
during connection establishment phase

... 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Acked segments
Unacknowledged segments

Available seq. nums Forbidden seq. num.

5 © O. Bonaventure, 2008CNP3/2008.3.

Sliding window

● Principle
- Sender keeps a list of all the segments that it is allowed to

send
● sending_window

- Receiver also maintains a receiving window with the list of
acceptable sequence number

● receiving_window

- Sender and receiver must use compatible windows
● sending_window ≤receiving window

● For example, window size is a constant for a given protocol or negotiated
during connection establishment phase

... 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Acked segments
Unacknowledged segments

Available seq. nums Forbidden seq. num.

6 © O. Bonaventure, 2008CNP3/2008.3.

Sliding window

● Principle
- Sender keeps a list of all the segments that it is allowed to

send
● sending_window

- Receiver also maintains a receiving window with the list of
acceptable sequence number

● receiving_window

- Sender and receiver must use compatible windows
● sending_window ≤receiving window

● For example, window size is a constant for a given protocol or negotiated
during connection establishment phase

... 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Acked segments
Unacknowledged segments

Available seq. nums Forbidden seq. num.

7 © O. Bonaventure, 2008CNP3/2008.3.

Sliding window

● Principle
- Sender keeps a list of all the segments that it is allowed to

send
● sending_window

- Receiver also maintains a receiving window with the list of
acceptable sequence number

● receiving_window

- Sender and receiver must use compatible windows
● sending_window ≤receiving window

● For example, window size is a constant for a given protocol or negotiated
during connection establishment phase

... 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Acked segments
Unacknowledged segments

Available seq. nums Forbidden seq. num.

8 © O. Bonaventure, 2008CNP3/2008.3.

Sliding windows : example

● Sending and receiving window : 3 segments

A B

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 Data.req(a)

Data.ind(a)

D(0,a)0 1 2 3 4 5 6 7 8 Data.req(b)

Data.ind(b)

D(1,b)0 1 2 3 4 5 6 7 8
Data.req(c)

Data.ind(c)

D(2,c)

C(OK0)
C(OK1)

C(OK2)
0 1 2 3 4 5 6 7 8

Data.req(d)

Data.ind(d)

D(3,d)

0 1 2 3 4 5 6 7 8

Data.req(e)

D(4,e)

Sending window

9 © O. Bonaventure, 2008CNP3/2008.3.

Encoding sequence numbers

● Problem
- How many distinct sequence numbers can we have

with a N bits sequence number ?
● N bits means 2N different sequence numbers

● Solution ?

10 © O. Bonaventure, 2008CNP3/2008.3.

Encoding sequence numbers

● Problem
- How many distinct sequence numbers can we have

with a N bits sequence number ?
● N bits means 2N different sequence numbers

● Solution
- place inside each transmitted segment its

sequence number modulo 2N
- The same sequence number will be used for

several different segments
● be careful, this could cause problems...

- Sliding window
● List of consecutive sequence numbers (modulo 2N) that

the sender is allowed to transmit

11 © O. Bonaventure, 2008CNP3/2008.3.

Sliding window : second example

A B

0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3

0 1 2 3

Data.req(a)

Data.ind(a)

D(0,a)Data.req(b)

Data.ind(b)

D(1,b)Data.req(c)

Data.ind(c)

D(2,c)

C(OK0)
C(OK1)

C(OK2)Data.req(d)

Data.ind(d)

D(3,d)Data.req(e)

D(0,e)

Sending window

● 3 segments sending and receiving window
- Sequence number encoded as 2 bits field

0 1 2 3
0 1 2 3

0 1 2 3

0 1 2 3

12 © O. Bonaventure, 2008CNP3/2008.3.

Reliable transfer with a sliding window

● How to provide a reliable data transfer with a
sliding window
- How to react upon reception of a control segment ?
- Sender’s and receiver’s behaviours

● Basic solutions, using ARQ* methods

- Go-Back-N
● simple implementation, in particular on receiving side
● throughput will be limited when losses occur

- Selective Repeat
● more difficult from an implementation viewpoint
● throughput can remain high when limited losses occur

* Automatic Repeat reQuest see http://en.wikipedia.org/wiki/Automatic_repeat_request

http://en.wikipedia.org/wiki/Automatic_repeat_request

13 © O. Bonaventure, 2008CNP3/2008.3.

GO-BACK-N

● Principle
- Receiver must be as simple as possible

- Receiver
● Only accepts consecutive in-sequence data segments
● Meaning of control segments

● Upon reception of data segment
● OKX means that all data segments, up to and including X have been

received correctly
● NAKX means that the data segment whose sequence number is X

contained an error.

- Sender
● Relies on a retransmission timer to detect segment losses
● Upon expiration of retransmission time or arrival of a NAK

segment : retransmit all the unacknowledged data segments

● the sender may thus retransmit a segment that was already received
correctly but out-of-sequence at destination

14 © O. Bonaventure, 2008CNP3/2008.3.

Go-Back-N : Receiver

- State variable
● next : sequence number of expected data segment

Wait

Recvd(D(next,SDU,CRC))
AND IsOK(CRC,SDU)

 Data.ind(SDU) ;

Recvd(D(t,SDU,CRC)) && t == next
AND NOT(IsOK(CRC,SDU))
send(C(NAK,next,CRC));

send(C(OK,next,CRC));
next=(next+1) mod C;

Recvd(D(t,SDU,CRC)) && t!= next
AND IsOK(CRC,SDU)

send(C(OK,(next-1)mod C ,CRC));

• C : constant which is the
total number of available
sequence numbers

15 © O. Bonaventure, 2008CNP3/2008.3.

Go-Back-N : Example (2)

A B

0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3

0 1 2 3

Data.req(e)

Data.req(a)

Data.ind(a)

D(0,a)

Data.req(c)

D(2,c)

C(OK,0)

C(OK,0)

Sending window

Data.req(b)

D(1,b)

Segment lost

Not expected seq num,
discarded

Retransmission
timer expires

Sending window is full
Application blocked
e will be accepted
and sent later

0 1 2 3
0 1 2 3

D(1,b)

Data.ind(b)

Data.req(d)

D(3,d)
Data.ind(d)

D(2,c)

Data.ind(c)

16 © O. Bonaventure, 2008CNP3/2008.3.

Go-Back-N : Sender

Wait

Data.req(SDU)
AND (seq < (base+w))

send(D(seq,SDU,CRC));
if (seq==base) {
start_timer ;
}
seq=(seq+1)mod C ;

Recvd(C(OK,t,CRC))
and CRCOK(C(OK,t,CRC))
base=(t+1);
if (base==seq)
{ cancel_timer();}
else
{ restart_timer(); }

- State variables
● base : sequence number of oldest unacked data segment
● seq : first available sequence number
● w : size of sending window

[Recvd(C(NAK,?,CRC))
and CRCOK(C(NAK,?,CRC))]

or timer expires
for (i=base;i<seq; i=i+1)
{ send(D(i,SDU,CRC)); }
restart_timer();

Recvd(C(?,?,CRC))
and NOT(CRCOK(C(?,?,CRC)))

-

17 © O. Bonaventure, 2008CNP3/2008.3.

Go-Back-N : Example

A B

0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3

0 1 2 3

Data.req(e)

Data.req(a)

Data.ind(a)

D(0,a)

Data.req(c)

D(2,c)

C(OK,0)

C(OK,0)

Sending window

Data.req(b)

D(1,b)

Transmission error

Invalid CRC, discarded

Not expected seq num,
discarded

Retransmission

Sending window is full
Application blocked
e will be accepted
and sent later

C(NAK,1)

0 1 2 3

0 1 2 3

0 1 2 3

D(1,b)

Data.ind(b)

Data.req(d)

D(3,d)
Data.ind(d)

D(2,c)

Data.ind(c)

0 1 2 3

18

Go Back-N : a bit of practice

Consider a go-back-n sender and a go-back receiver that are
directly connected with a 10 Mbps link that has a propagation
delay of 100 milliseconds. Assume that the retransmission
timer is set to 3 seconds. If the window has a length of 4
segments, draw a time-sequence diagram showing the
transmission of 10 segments (each segment contains 10000
bits):

 - when there are no losses
 - when the third and seventh segments are lost
 - when the second, fourth, sixth, eighth, ...
acknowledgements are lost
 - when the third and fourth data segments are reordered (i.e.
the fourth arrives before the third)

19

Go Back-N : a bit of practice

Consider the following situation. A go-back-n sender with
Sequence number encoded as 2 bits has a sending windows
of 4 segments.

The sender sent a full window of data segments. All the
Segments have been received correctly and in-order by the
receiver, but all the returned acknowledgements have been
lost.

Show by using a time sequence diagram (e.g. by considering
a window of four segments) what problem can happens in
this case.

Can you fix the problem on the go-back-n sender ?

20 © O. Bonaventure, 2008CNP3/2008.3.

Go-Back-N : 10 segments with no loss

D(0,a)

D(2,c)

C(OK,0)

C(OK,2)

D(1,b)

C(OK,1)

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

C(OK,3)

D(3,d)

D(4,e)

D(0,f)

D(1,g)

D(2,h)
C(OK,4)

C(OK,0)

C(OK,1)

C(OK,2)

D(8,f)

D(4,j)

D(3,i)

C(OK,3)

C(OK,4)

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4 0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4
0 1 2 3 4

0 1 2 3 4

21 © O. Bonaventure, 2008CNP3/2008.3.

Go-Back-N : 10 segments, 3rd and 7th lost

D(0,a)

D(2,c)

C(OK,0)

D(1,b)

C(OK,1)

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

C(OK,1)

D(3,d)

D(4,e)

D(0,f)

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4
0 1 2 3 4

0 1 2 3 4

0 1 2 3 4 0 1 2 3 4

C(OK,1)

C(OK,1)

Retransmission
timer expires D(2,c)

D(3,d)

D(4,e)

D(0,f)
C(OK,2)

C(OK,3)

C(OK,4)
C(OK,0)

D(1,g)

D(2,h)

D(3,i)
D(4,j)

Retransmission
timer expires

22

Go-Back-N : 10 segments, 2,4,6... acks lost

D(0,a)

D(2,c)

C(OK,0)

C(OK,2)

D(1,b)

C(OK,1)

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

C(OK,3)

D(3,d)

D(4,e)
0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4 D(0,f)

D(1,g)

D(2,h)

D(3,i)

C(OK,4)

0 1 2 3 4 C(OK,0)

C(OK,1)0 1 2 3 4

D(4,j)
C(OK,2)

C(OK,3)

C(OK,4)

23

Go-Back-N : 10 segments, invert 3 and 4

D(0,a)

D(2,c)

C(OK,0)

C(OK,1)

D(1,b)

C(OK,1)

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

C(OK,2)

D(3,d)

D(4,e)

D(0,f)

D(1,g)

D(8,f)

D(4,e)

D(3,d)

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4 0 1 2 3 4

Retransmission
timer expires

D(0,f)

D(1,g)

C(OK,2)

C(OK,2)

C(OK,2)

C(OK,3)

C(OK,4)

C(OK,0)
0 1 2 3 4
0 1 2 3 4

D(2,h)

D(3,i)

