
1
© O. Bonaventure, 2008CNP3/2008.3.

Protocol 3

l How can we provide a reliable service in the
transport layer

l Hypotheses
1. The application sends small SDUs
2. The network layer provides a perfect service

1. Packets corruption are possible
2. No packet is lost
3. There is no packet reordering
4. There are no duplications of packets

3. Data transmission is unidirectional

● ?

4
© O. Bonaventure, 2008CNP3/2008.3.

How to detect packet corruption ?

● Principle

- Sender adds some control information inside the
segment

● control information is computed over the entire segment
and placed in the segment header or trailer

- Receiver checks that the received control
information is correct by recomputing it

Type ControlType+ Control

5
© O. Bonaventure, 2008CNP3/2008.3.

Parity bits

● Simple solution to detect transmission errors

● Used on slow-speed serial lines
- e.g. modems connected to the telephone network

● Odd Parity
- For each group of n bits, sender computes the

n+1th bit so that the n+1 group contains an odd
number of bits set to 1

● Examples

● Even Parity
0011010 11011000 1

https://en.wikipedia.org/wiki/Parity_bit

https://en.wikipedia.org/wiki/Parity_bit

6
© O. Bonaventure, 2008CNP3/2008.3.

Internet checksum

● Motivation
- Internet protocols are implemented in software and we would like

to have efficient algorithms to detect transmission errors that are
easy to implement

● Solution
- Internet checksum

● Sender computes for each segment and over the entire
segment (protocol header included) the 1s complement of the
« one complement sum » of all the 16 bits words in the
segment, with the checksum field to zero.

● The result is inserted in then the checksum field of the
protocole header

● Receiver recomputes the checksum over each received
segment by redoing the « one complement sum » of all 16 bits
words, checksum included and check that the sum is correct,
i.e that the result is zero in one complement arithmetic. If not,
the message is assumed to be corrupt.

7

Internet checksum

« One complement sum » : Add the 16-bit values up.
Each time a carry-out (17th bit) is produced, swing that
bit around and add it back into the LSb (one's
digit).

This not really a one complement sum as the addition
operation used simply ignores register capacity overflow
and carry on the computation until there are no more 16
bits words to eat.

 1001|1000
 1011|1110
 0101|0110

 -103
 -65

= -168

1

 0101|0111 (87)=

8
© O. Bonaventure, 2008CNP3/2008.3.

Internet checksum : example

● Assume a segment composed of 48 bits

0110|0110|0110|0110 0101|0101|0101|0101 0000|1111|0000|1111

1011|1011|1011|1011

1100|1010|1100|1010
0011|0101|0011|0101

+

=

+

=

0101|0101|0101|0101

0000|1111|0000|1111
0110|0100|0110|0111

1011|1011|1011|1011

1100|1010|1100|1010
0011|0101|0011|0101

+

=

+

=

0101|0111|0101|0100

0000|1111|0000|1111

● Does this detect ALL corrupted messages ?
● Why is there a 1s complement at the end ?

9

Internet checksum : C implementation

 {
 /* Compute Internet Checksum for "count" bytes
 * beginning at location "addr".
 */
 register long sum = 0;

 while(count > 1) {
 /* This is the inner loop */
 sum += * (unsigned short) addr++;
 count -= 2;
 }

 /* Add left-over byte, if any */
 if(count > 0)
 sum += * (unsigned char *) addr;

 /* Fold 32-bit sum to 16 bits */
 while (sum>>16)
 sum = (sum & 0xffff) + (sum >> 16);

 checksum = ~sum;
 }

Source : RFC 1701 (septembre 1988)

10
© O. Bonaventure, 2008CNP3/2008.3.

Simple binary division « checksum »

● Motivation & Principle
- Improve the error detection performances of the

Internet checksum by using the division operation
instead of the addition + 1s complement.

● Solution
- Use the division operation instead of the addition +

1st complement

- Sender and receiver agree on a common divisor.

- Sender compute the remainder of the message
divided by the divisor.

- Receiver do the same and check if the remainder
is the same as the one computed by the sender. If not, the
message is assumed to be corrupt.

11

Example

Assume a segment of 12 bits :
And a divisor of 4 bits :

1001
110000101111

