Protocol 3

I How can we provide a reliable service in the
transport layer

I Hypotheses
1. The application sends small SDUs

2. The network layer provides a perfect service
1. Packets corruption are possible
2. No packet is lost
3. There is no packet reordering
4. There are no duplications of packets

3. Data transmission is unidirectional

CNP3/2008.3. © O. Bonaventure, 2008

Transmission errors

* Which types of packet corruption errors do we
need to consider in the transport layer ?

/1

;_, Qetwo rk -
e \ 1

* Physical-layer transmission errors caused by

nature
- Random isolated error
* one bit is flipped in the segment

- Random burst error

* a group of n bits inside the segment is errored
* most of the bits in the group are flipped

CNP3/2008.3. © O. Bonaventure, 2008

2

Security issues and packet corruption errors

* Information sent over a network may become
corrupted for other reasons than transmission
errors

——————————————————————————

H B
I These attacks are dealt by using special

security protocols and mechanisms outside

the transport layer
3

CNP3/2008.3. © O. Bonaventure, 2008

How to detect packet corruption ?

* Principle

- Sender adds some control information inside the

segment
* control information is computed over the entire segment
and placed in the segment header or trailer

— m—

Type+ Control Type Control

- Recelver checks that the received control
iInformation is correct by recomputing it

CNP3/2008.3. © O. Bonaventure, 2008

Parity bits

* Simple solution to detect transmission errors

* Used on slow-speed serial lines
- e.g. modems connected to the telephone network

* Odd Parity

- For each group of n bits, sender computes the
n+1th bit so that the n+1 group contains an odd
number of bits set to 1

* Examples
0011010 O 11011001
* Even Parity

https://en.wikipedia.o
CNP3/2008.3. © O. Bonaventure, 2008

https://en.wikipedia.org/wiki/Parity_bit

Internet checksum

* Motivation
Internet protocols are implemented in software and we would like
to have efficient algorithms to detect transmission errors that are
easy to implement

* Solution
Internet checksum
* Sender computes for each segment and over the entire
segment (protocol header included) the 1s complement of the
« one complement sum » of all the 16 bits words in the
segment, with the checksum field to zero.

* The result is inserted in then the checksum field of the
protocole header

* Receiver recomputes the checksum over each received
segment by redoing the « one complement sum » of all 16 bits
words, checksum included and check that the sum is correct,
I.e that the result is zero in one complement arithmetic. If not,
the message is assumed to be corrupt.

CNP3/2008.3. © O. Bonaventure, 2008

6

Internet checksum

« One complement sum » : Add the 16-bit values up.
Each time a carry-out (17th bit) is produced, swing that
bit around and add it back into the LSb (one's

digit).

This not really a one complement sum as the addition
operation used simply ignores register capacity overflow
and carry on the computation until there are no more 16
bits words to eat.

-103 100111000
-65 101111110
1 010110110
\/

= —-168= 010110111 (87)

Internet checksum : example

* Assume a segment composed of 48 bits

0110(01101011010110 01011010110101/0101 000011110000 (1111
+01011010110101|0101

=101111011(101111011 011010100]0110|0111

+0000 1111100001111 +0101|10111]0101|0100
=1100]1010|1100(1010 =1011]101111011|1011
0011|10101100111]10101 +0000 (1111100001111

=110011010(1110011010
0011101011001110101

* Does this detect ALL corrupted messages ?
* Why i1s there a 1s complement at the end ?

CNP3/2008.3. © O. Bonaventure, 2008

Internet checksum : C implementation

/* Compute Internet Checksum for "count" bytes

* beginning at location "addr".
*/

register long sum = 0;

while(count > 1) {

/* This 1is the inner loop */
sum += * (unsigned short) addr++;
count -= 2;

/* Add left-over byte, if any */
if(count > 0)
sum += * (unsigned char *) addr;
/* Fold 32-bit sum to 16 bits */
while (sum>>106)
sum = (sum & Oxffff) + (sum >> 16);

checksum = ~sum;

Source : RFC 1701 (septembre 1988)

9

Simple binary division « checksum »

* Motivation & Principle
- Improve the error detection performances of the
Internet checksum by using the division operation
instead of the addition + 1s complement.

. Solutlon

Use the division operation instead of the addition +
1st complement

- Sender and receiver agree on a common divisor.

- Sender compute the remainder of the message
divided by the divisor.

- Receiver do the same and check if the remainder
IS the same as the one computed by the sender. If not, the
message is assumed to be corrupt.

CNP3/2008.3. © O. Bonaventure, 2008

10

Assume a segment of 12 bits ;110000101111
And a divisor of 4 bits 1001

11

