Chapter 16: Sockets 427

16 Sockets

This chapter describes the GNU facilities for interprocess communication using sockets.

A socket is a generalized interprocess communication channel. Like a pipe, a socket
is represented as a file descriptor. Unlike pipes sockets support communication between
unrelated processes, and even between processes running on different machines that com-
municate over a network. Sockets are the primary means of communicating with other
machines; telnet, rlogin, ftp, talk and the other familiar network programs use sockets.

Not all operating systems support sockets. In the GNU C Library, the header file
sys/socket.h exists regardless of the operating system, and the socket functions always
exist, but if the system does not really support sockets these functions always fail.

Incomplete: We do not currently document the facilities for broadcast messages or for
configuring Internet interfaces. The reentrant functions and some newer functions that are
related to IPv6 aren’t documented either so far.

16.1 Socket Concepts

When you create a socket, you must specify the style of communication you want to use
and the type of protocol that should implement it. The communication style of a socket
defines the user-level semantics of sending and receiving data on the socket. Choosing a
communication style specifies the answers to questions such as these:

e What are the units of data transmission? Some communication styles regard the data
as a sequence of bytes with no larger structure; others group the bytes into records
(which are known in this context as packets).

e Can data be lost during normal operation? Some communication styles guarantee that
all the data sent arrives in the order it was sent (barring system or network crashes);
other styles occasionally lose data as a normal part of operation, and may sometimes
deliver packets more than once or in the wrong order.

Designing a program to use unreliable communication styles usually involves taking
precautions to detect lost or misordered packets and to retransmit data as needed.

e Is communication entirely with one partner? Some communication styles are like a
telephone call—you make a connection with one remote socket and then exchange data
freely. Other styles are like mailing letters—you specify a destination address for each
message you send.

You must also choose a namespace for naming the socket. A socket name (“address”) is
meaningful only in the context of a particular namespace. In fact, even the data type to use
for a socket name may depend on the namespace. Namespaces are also called “domains”,
but we avoid that word as it can be confused with other usage of the same term. Each
namespace has a symbolic name that starts with ‘PF_’. A corresponding symbolic name
starting with ‘AF_’ designates the address format for that namespace.

Finally you must choose the protocol to carry out the communication. The protocol
determines what low-level mechanism is used to transmit and receive data. Each protocol
is valid for a particular namespace and communication style; a namespace is sometimes
called a protocol family because of this, which is why the namespace names start with
‘PF_’.

Chapter 16: Sockets 428

The rules of a protocol apply to the data passing between two programs, perhaps on
different computers; most of these rules are handled by the operating system and you need
not know about them. What you do need to know about protocols is this:

e In order to have communication between two sockets, they must specify the same
protocol.

e Each protocol is meaningful with particular style/namespace combinations and cannot
be used with inappropriate combinations. For example, the TCP protocol fits only the
byte stream style of communication and the Internet namespace.

e For each combination of style and namespace there is a default protocol, which you can
request by specifying 0 as the protocol number. And that’s what you should normally
do—use the default.

Throughout the following description at various places variables/parameters to denote
sizes are required. And here the trouble starts. In the first implementations the type of these
variables was simply int. On most machines at that time an int was 32 bits wide, which
created a de facto standard requiring 32-bit variables. This is important since references to
variables of this type are passed to the kernel.

Then the POSIX people came and unified the interface with the words "all size values
are of type size_t". On 64-bit machines size_t is 64 bits wide, so pointers to variables
were no longer possible.

The Unix98 specification provides a solution by introducing a type socklen_t. This
type is used in all of the cases that POSIX changed to use size_t. The only requirement of
this type is that it be an unsigned type of at least 32 bits. Therefore, implementations which
require that references to 32-bit variables be passed can be as happy as implementations
which use 64-bit values.

16.2 Communication Styles

The GNU C Library includes support for several different kinds of sockets, each with dif-
ferent characteristics. This section describes the supported socket types. The symbolic
constants listed here are defined in sys/socket.h.

int SOCK_STREAM [Macro]
The SOCK_STREAM style is like a pipe (see Chapter 15 [Pipes and FIFOs], page 422).
It operates over a connection with a particular remote socket and transmits data
reliably as a stream of bytes.

Use of this style is covered in detail in Section 16.9 [Using Sockets with Connections],
page 453.

int SOCK_DGRAM [Macro]
The SOCK_DGRAM style is used for sending individually-addressed packets unreliably.
It is the diametrical opposite of SOCK_STREAM.
Each time you write data to a socket of this kind, that data becomes one packet.
Since SOCK_DGRAM sockets do not have connections, you must specify the recipient
address with each packet.

The only guarantee that the system makes about your requests to transmit data is
that it will try its best to deliver each packet you send. It may succeed with the sixth

Chapter 16: Sockets 429

packet after failing with the fourth and fifth packets; the seventh packet may arrive
before the sixth, and may arrive a second time after the sixth.

The typical use for SOCK_DGRAM is in situations where it is acceptable to simply re-send
a packet if no response is seen in a reasonable amount of time.

See Section 16.10 [Datagram Socket Operations], page 465, for detailed information
about how to use datagram sockets.

int SOCK_RAW [Macro]
This style provides access to low-level network protocols and interfaces. Ordinary
user programs usually have no need to use this style.

16.3 Socket Addresses

The name of a socket is normally called an address. The functions and symbols for dealing
with socket addresses were named inconsistently, sometimes using the term “name” and
sometimes using “address”. You can regard these terms as synonymous where sockets are
concerned.

A socket newly created with the socket function has no address. Other processes can
find it for communication only if you give it an address. We call this binding the address
to the socket, and the way to do it is with the bind function.

You need be concerned with the address of a socket if other processes are to find it and
start communicating with it. You can specify an address for other sockets, but this is usually
pointless; the first time you send data from a socket, or use it to initiate a connection, the
system assigns an address automatically if you have not specified one.

Occasionally a client needs to specify an address because the server discriminates based
on address; for example, the rsh and rlogin protocols look at the client’s socket address
and only bypass password checking if it is less than IPPORT_RESERVED (see Section 16.6.3
[Internet Ports], page 445).

The details of socket addresses vary depending on what namespace you are using. See
Section 16.5 [The Local Namespace|, page 433, or Section 16.6 [The Internet Namespace],
page 435, for specific information.

Regardless of the namespace, you use the same functions bind and getsockname to set
and examine a socket’s address. These functions use a phony data type, struct sockaddr
*, to accept the address. In practice, the address lives in a structure of some other data
type appropriate to the address format you are using, but you cast its address to struct
sockaddr * when you pass it to bind.

16.3.1 Address Formats

The functions bind and getsockname use the generic data type struct sockaddr * to
represent a pointer to a socket address. You can’t use this data type effectively to interpret
an address or construct one; for that, you must use the proper data type for the socket’s
namespace.

Thus, the usual practice is to construct an address of the proper namespace-specific type,
then cast a pointer to struct sockaddr * when you call bind or getsockname.

Chapter 16: Sockets 430

The one piece of information that you can get from the struct sockaddr data type is
the address format designator. This tells you which data type to use to understand the
address fully.

The symbols in this section are defined in the header file sys/socket.h.

struct sockaddr [Data Type]
The struct sockaddr type itself has the following members:

short int sa_family
This is the code for the address format of this address. It identifies the
format of the data which follows.

char sa_data[14]
This is the actual socket address data, which is format-dependent. Its
length also depends on the format, and may well be more than 14. The
length 14 of sa_data is essentially arbitrary.

Each address format has a symbolic name which starts with ‘AF_’. Each of them corre-
sponds to a ‘PF_’ symbol which designates the corresponding namespace. Here is a list of
address format names:

AF_LOCAL This designates the address format that goes with the local namespace. (PF_
LOCAL is the name of that namespace.) See Section 16.5.2 [Details of Local
Namespace], page 433, for information about this address format.

AF_UNIX Thisis asynonym for AF_LOCAL. Although AF_LOCAL is mandated by POSIX.1g,
AF_UNIX is portable to more systems. AF_UNIX was the traditional name stem-
ming from BSD, so even most POSIX systems support it. It is also the name
of choice in the Unix98 specification. (The same is true for PF_UNIX vs. PF_
LOCAL).

AF_FILE This is another synonym for AF_LOCAL, for compatibility. (PF_FILE is likewise
a synonym for PF_LOCAL.)

AF_INET This designates the address format that goes with the Internet namespace.
(PF_INET is the name of that namespace.) See Section 16.6.1 [Internet Socket
Address Formats|, page 436.

AF_INET6 This is similar to AF_INET, but refers to the IPv6 protocol. (PF_INET6 is the
name of the corresponding namespace.)

AF_UNSPEC
This designates no particular address format. It is used only in rare cases,
such as to clear out the default destination address of a “connected” datagram
socket. See Section 16.10.1 [Sending Datagrams|, page 465.

The corresponding namespace designator symbol PF_UNSPEC exists for com-
pleteness, but there is no reason to use it in a program.

sys/socket.h defines symbols starting with ‘AF_’ for many different kinds of networks,
most or all of which are not actually implemented. We will document those that really work
as we receive information about how to use them.

Chapter 16: Sockets 431

16.3.2 Setting the Address of a Socket

Use the bind function to assign an address to a socket. The prototype for bind is in
the header file sys/socket.h. For examples of use, see Section 16.5.3 [Example of Local-
Namespace Sockets], page 434, or see Section 16.6.7 [Internet Socket Example], page 450.

int bind (int socket, struct sockaddr *addr, socklen_t length) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

The bind function assigns an address to the socket socket. The addr and length
arguments specify the address; the detailed format of the address depends on the
namespace. The first part of the address is always the format designator, which
specifies a namespace, and says that the address is in the format of that namespace.

The return value is 0 on success and -1 on failure. The following errno error condi-
tions are defined for this function:

EBADF The socket argument is not a valid file descriptor.
ENOTSOCK The descriptor socket is not a socket.

EADDRNQOTAVATIL
The specified address is not available on this machine.

EADDRINUSE
Some other socket is already using the specified address.

EINVAL The socket socket already has an address.

EACCES You do not have permission to access the requested address. (In the
Internet domain, only the super-user is allowed to specify a port number
in the range 0 through IPPORT_RESERVED minus one; see Section 16.6.3
[Internet Ports], page 445.)

Additional conditions may be possible depending on the particular namespace of the
socket.

16.3.3 Reading the Address of a Socket

Use the function getsockname to examine the address of an Internet socket. The prototype
for this function is in the header file sys/socket.h.

int getsockname (int socket, struct sockaddr *addr, socklen_t [Function]
*length-ptr)
Preliminary: | MT-Safe | AS-Safe | AC-Safe mem/hurd | See Section 1.2.2.1
[POSIX Safety Concepts], page 2.

The getsockname function returns information about the address of the socket socket
in the locations specified by the addr and length-ptr arguments. Note that the length-
ptr is a pointer; you should initialize it to be the allocation size of addr, and on return
it contains the actual size of the address data.

The format of the address data depends on the socket namespace. The length of
the information is usually fixed for a given namespace, so normally you can know
exactly how much space is needed and can provide that much. The usual practice is

Chapter 16: Sockets 432

to allocate a place for the value using the proper data type for the socket’s namespace,
then cast its address to struct sockaddr * to pass it to getsockname.

The return value is 0 on success and -1 on error. The following errno error conditions
are defined for this function:

EBADF The socket argument is not a valid file descriptor.
ENOTSOCK The descriptor socket is not a socket.

ENOBUFS There are not enough internal buffers available for the operation.

You can’t read the address of a socket in the file namespace. This is consistent with the

rest of the system; in general, there’s no way to find a file’s name from a descriptor for that
file.

16.4 Interface Naming

Each network interface has a name. This usually consists of a few letters that relate to the
type of interface, which may be followed by a number if there is more than one interface
of that type. Examples might be lo (the loopback interface) and ethO (the first Ethernet
interface).

Although such names are convenient for humans, it would be clumsy to have to use them
whenever a program needs to refer to an interface. In such situations an interface is referred
to by its index, which is an arbitrarily-assigned small positive integer.

The following functions, constants and data types are declared in the header file
net/if.h.

size_t IFNAMSIZ [Constant]
This constant defines the maximum buffer size needed to hold an interface name,
including its terminating zero byte.

unsigned int if_nametoindex (const char *ifname) [Function]
Preliminary: | MT-Safe | AS-Unsafe lock | AC-Unsafe lock fd | See Section 1.2.2.1
[POSIX Safety Concepts], page 2.

This function yields the interface index corresponding to a particular name. If no
interface exists with the name given, it returns 0.

char * if_indextoname (unsigned int ifindex, char *ifname) [Function]
Preliminary: | MT-Safe | AS-Unsafe lock | AC-Unsafe lock fd | See Section 1.2.2.1
[POSIX Safety Concepts], page 2.

This function maps an interface index to its corresponding name. The returned name
is placed in the buffer pointed to by ifname, which must be at least IFNAMSIZ bytes in
length. If the index was invalid, the function’s return value is a null pointer, otherwise
it is ifname.

struct if_nameindex [Data Type]
This data type is used to hold the information about a single interface. It has the
following members:

unsigned int if_index;
This is the interface index.

Chapter 16: Sockets 433

char *xif_name
This is the null-terminated index name.

struct if_nameindex * if_nameindex (void) [Function]
Preliminary: | MT-Safe | AS-Unsafe heap lock/hurd | AC-Unsafe lock/hurd fd mem
| See Section 1.2.2.1 [POSIX Safety Concepts], page 2.

This function returns an array of if_nameindex structures, one for every interface
that is present. The end of the list is indicated by a structure with an interface of 0
and a null name pointer. If an error occurs, this function returns a null pointer.

The returned structure must be freed with if_freenameindex after use.

void if_freenameindex (struct if-nameindex *ptr) [Function]
Preliminary: | MT-Safe | AS-Unsafe heap | AC-Unsafe mem | See Section 1.2.2.1
[POSIX Safety Concepts], page 2.

This function frees the structure returned by an earlier call to if _nameindex.

16.5 The Local Namespace

This section describes the details of the local namespace, whose symbolic name (required
when you create a socket) is PF_LOCAL. The local namespace is also known as “Unix domain
sockets”. Another name is file namespace since socket addresses are normally implemented
as file names.

16.5.1 Local Namespace Concepts

In the local namespace socket addresses are file names. You can specify any file name you
want as the address of the socket, but you must have write permission on the directory
containing it. It’s common to put these files in the /tmp directory.

One peculiarity of the local namespace is that the name is only used when opening the
connection; once open the address is not meaningful and may not exist.

Another peculiarity is that you cannot connect to such a socket from another machine—
not even if the other machine shares the file system which contains the name of the socket.
You can see the socket in a directory listing, but connecting to it never succeeds. Some
programs take advantage of this, such as by asking the client to send its own process ID, and
using the process IDs to distinguish between clients. However, we recommend you not use
this method in protocols you design, as we might someday permit connections from other
machines that mount the same file systems. Instead, send each new client an identifying
number if you want it to have one.

After you close a socket in the local namespace, you should delete the file name from the
file system. Use unlink or remove to do this; see Section 14.6 [Deleting Files], page 395.

The local namespace supports just one protocol for any communication style; it is pro-
tocol number 0.

16.5.2 Details of Local Namespace

To create a socket in the local namespace, use the constant PF_LOCAL as the namespace
argument to socket or socketpair. This constant is defined in sys/socket.h.

Chapter 16: Sockets 434

int PF_LOCAL [Macro]
This designates the local namespace, in which socket addresses are local names, and
its associated family of protocols. PF_Local is the macro used by Posix.1g.

int PF_UNIX [Macro]
This is a synonym for PF_LOCAL, for compatibility’s sake.

int PF_FILE [Macro]
This is a synonym for PF_LOCAL, for compatibility’s sake.

The structure for specifying socket names in the local namespace is defined in the header
file sys/un.h:

struct sockaddr_un [Data Type]
This structure is used to specify local namespace socket addresses. It has the following
members:

short int sun_family
This identifies the address family or format of the socket address. You
should store the value AF_LOCAL to designate the local namespace. See
Section 16.3 [Socket Addresses], page 429.

char sun_path[108]
This is the file name to use.

Incomplete: Why is 108 a magic number? RMS suggests making this
a zero-length array and tweaking the following example to use alloca
to allocate an appropriate amount of storage based on the length of the
filename.

You should compute the length parameter for a socket address in the local namespace as
the sum of the size of the sun_family component and the string length (not the allocation
size!) of the file name string. This can be done using the macro SUN_LEN:

int SUN_LEN (struct sockaddr_un * ptr) [Macro]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

The macro computes the length of socket address in the local namespace.

16.5.3 Example of Local-Namespace Sockets

Here is an example showing how to create and name a socket in the local namespace.

#include <stddef.h>
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/un.h>

int
make_named_socket (const char *filename)

Chapter 16: Sockets 435

struct sockaddr_un name;
int sock;
size_t size;

/* Create the socket. */
sock = socket (PF_LOCAL, SOCK_DGRAM, 0);
if (sock < 0)

{

perror ("socket");
exit (EXIT_FAILURE);
}

/* Bind a name to the socket. */

name.sun_family = AF_LOCAL;

strncpy (name.sun_path, filename, sizeof (name.sun_path));
name.sun_path[sizeof (name.sun_path) - 1] = °\0’;

/* The size of the address is
the offset of the start of the filename,
plus its length (not including the terminating null byte).
Alternatively you can just do:
size = SUN_LEN (&name);

*/
size = (offsetof (struct sockaddr_un, sun_path)
+ strlen (name.sun_path));

if (bind (sock, (struct sockaddr *) &name, size) < 0)
{
perror ("bind");
exit (EXIT_FAILURE);
}

return sock;

}

16.6 The Internet Namespace

This section describes the details of the protocols and socket naming conventions used in
the Internet namespace.

Originally the Internet namespace used only IP version 4 (IPv4). With the growing
number of hosts on the Internet, a new protocol with a larger address space was necessary:
IP version 6 (IPv6). IPv6 introduces 128-bit addresses (IPv4 has 32-bit addresses) and

other features, and will eventually replace IPv4.

To create a socket in the IPv4 Internet namespace, use the symbolic name PF_INET of
this namespace as the namespace argument to socket or socketpair. For IPv6 addresses
you need the macro PF_INET6. These macros are defined in sys/socket.h.

int PF_INET [Macro]
This designates the IPv4 Internet namespace and associated family of protocols.

int PF_INET6 [Macro]
This designates the IPv6 Internet namespace and associated family of protocols.

A socket address for the Internet namespace includes the following components:

Chapter 16: Sockets 436

e The address of the machine you want to connect to. Internet addresses can be specified
in several ways; these are discussed in Section 16.6.1 [Internet Socket Address Formats],
page 436, Section 16.6.2 [Host Addresses|, page 437 and Section 16.6.2.4 [Host Names],
page 441.

e A port number for that machine. See Section 16.6.3 [Internet Ports|, page 445.

You must ensure that the address and port number are represented in a canonical for-
mat called network byte order. See Section 16.6.5 [Byte Order Conversion|, page 447, for
information about this.

16.6.1 Internet Socket Address Formats

In the Internet namespace, for both IPv4 (AF_INET) and IPv6 (AF_INET6), a socket address
consists of a host address and a port on that host. In addition, the protocol you choose
serves effectively as a part of the address because local port numbers are meaningful only
within a particular protocol.

The data types for representing socket addresses in the Internet namespace are defined
in the header file netinet/in.h.

struct sockaddr_in [Data Type]
This is the data type used to represent socket addresses in the Internet namespace.
It has the following members:

sa_family_t sin_family
This identifies the address family or format of the socket address. You
should store the value AF_INET in this member. See Section 16.3 [Socket
Addresses|, page 429.

struct in_addr sin_addr
This is the Internet address of the host machine. See Section 16.6.2 [Host
Addresses|, page 437, and Section 16.6.2.4 [Host Names|, page 441, for
how to get a value to store here.

unsigned short int sin_port
This is the port number. See Section 16.6.3 [Internet Ports|, page 445.

When you call bind or getsockname, you should specify sizeof (struct sockaddr_in)
as the length parameter if you are using an IPv4 Internet namespace socket address.

struct sockaddr_in6 [Data Type]
This is the data type used to represent socket addresses in the IPv6 namespace. It
has the following members:

sa_family_t sin6_family
This identifies the address family or format of the socket address. You
should store the value of AF_INET6 in this member. See Section 16.3
[Socket Addresses|, page 429.

struct in6_addr sin6_addr
This is the IPv6 address of the host machine. See Section 16.6.2 [Host
Addresses|, page 437, and Section 16.6.2.4 [Host Names|, page 441, for
how to get a value to store here.

Chapter 16: Sockets 437

uint32_t sin6_flowinfo
This is a currently unimplemented field.

uintl6_t sin6_port
This is the port number. See Section 16.6.3 [Internet Ports], page 445.

16.6.2 Host Addresses

Each computer on the Internet has one or more Internet addresses, numbers which identify
that computer among all those on the Internet. Users typically write IPv4 numeric host
addresses as sequences of four numbers, separated by periods, as in ‘128.52.46.32’, and
IPv6 numeric host addresses as sequences of up to eight numbers separated by colons, as
in ‘6f03:1200:836f:c100::1’.

Each computer also has one or more host names, which are strings of words separated
by periods, as in ‘www.gnu.org’.

Programs that let the user specify a host typically accept both numeric addresses and
host names. To open a connection a program needs a numeric address, and so must convert
a host name to the numeric address it stands for.

16.6.2.1 Internet Host Addresses

An IPv4 Internet host address is a number containing four bytes of data. Historically
these are divided into two parts, a network number and a local network address number
within that network. In the mid-1990s classless addresses were introduced which changed
this behavior. Since some functions implicitly expect the old definitions, we first describe
the class-based network and will then describe classless addresses. IPv6 uses only classless
addresses and therefore the following paragraphs don’t apply.

The class-based IPv4 network number consists of the first one, two or three bytes; the
rest of the bytes are the local address.

IPv4 network numbers are registered with the Network Information Center (NIC), and
are divided into three classes—A, B and C. The local network address numbers of individual
machines are registered with the administrator of the particular network.

Class A networks have single-byte numbers in the range 0 to 127. There are only a
small number of Class A networks, but they can each support a very large number of hosts.
Medium-sized Class B networks have two-byte network numbers, with the first byte in the
range 128 to 191. Class C networks are the smallest; they have three-byte network numbers,
with the first byte in the range 192-255. Thus, the first 1, 2, or 3 bytes of an Internet address
specify a network. The remaining bytes of the Internet address specify the address within
that network.

The Class A network 0 is reserved for broadcast to all networks. In addition, the host
number 0 within each network is reserved for broadcast to all hosts in that network. These
uses are obsolete now but for compatibility reasons you shouldn’t use network 0 and host
number 0.

The Class A network 127 is reserved for loopback; you can always use the Internet
address ‘127.0.0.1" to refer to the host machine.

Since a single machine can be a member of multiple networks, it can have multiple

Internet host addresses. However, there is never supposed to be more than one machine
with the same host address.

Chapter 16: Sockets 438

There are four forms of the standard numbers-and-dots notation for Internet addresses:

a.b.c.d This specifies all four bytes of the address individually and is the commonly
used representation.

a.b.c The last part of the address, c, is interpreted as a 2-byte quantity. This is
useful for specifying host addresses in a Class B network with network address
number a.b.

a.b The last part of the address, b, is interpreted as a 3-byte quantity. This is
useful for specifying host addresses in a Class A network with network address
number a.

a If only one part is given, this corresponds directly to the host address number.

Within each part of the address, the usual C conventions for specifying the radix apply.
In other words, a leading ‘0x’ or ‘0X’ implies hexadecimal radix; a leading ‘0’ implies octal;
and otherwise decimal radix is assumed.

Classless Addresses

IPv4 addresses (and IPv6 addresses also) are now considered classless; the distinction be-
tween classes A, B and C can be ignored. Instead an IPv4 host address consists of a 32-bit
address and a 32-bit mask. The mask contains set bits for the network part and cleared
bits for the host part. The network part is contiguous from the left, with the remaining
bits representing the host. As a consequence, the netmask can simply be specified as the
number of set bits. Classes A, B and C are just special cases of this general rule. For
example, class A addresses have a netmask of ‘255.0.0.0 or a prefix length of 8.

Classless IPv4 network addresses are written in numbers-and-dots notation with the
prefix length appended and a slash as separator. For example the class A network 10 is
written as ‘10.0.0.0/8".

IPv6 Addresses

IPv6 addresses contain 128 bits (IPv4 has 32 bits) of data. A host address is usually
written as eight 16-bit hexadecimal numbers that are separated by colons. Two colons are
used to abbreviate strings of consecutive zeros. For example, the IPv6 loopback address
‘0:0:0:0:0:0:0:1’ can just be written as ‘::1’.

16.6.2.2 Host Address Data Type

IPv4 Internet host addresses are represented in some contexts as integers (type uint32_t).
In other contexts, the integer is packaged inside a structure of type struct in_addr. It
would be better if the usage were made consistent, but it is not hard to extract the integer
from the structure or put the integer into a structure.

You will find older code that uses unsigned long int for IPv4 Internet host addresses
instead of uint32_t or struct in_addr. Historically unsigned long int was a 32-bit num-
ber but with 64-bit machines this has changed. Using unsigned long int might break the
code if it is used on machines where this type doesn’t have 32 bits. uint32_t is specified
by Unix98 and guaranteed to have 32 bits.

IPv6 Internet host addresses have 128 bits and are packaged inside a structure of type
struct in6_addr.

Chapter 16: Sockets 439

The following basic definitions for Internet addresses are declared in the header file
netinet/in.h:

struct in_addr [Data Type]
This data type is used in certain contexts to contain an IPv4 Internet host address.
It has just one field, named s_addr, which records the host address number as an
uint32_t.

uint32_t INADDR_LOOPBACK [Macro]
You can use this constant to stand for “the address of this machine,” instead of finding
its actual address. It is the IPv4 Internet address ‘127.0.0.1’, which is usually called
‘localhost’. This special constant saves you the trouble of looking up the address of
your own machine. Also, the system usually implements INADDR_LOOPBACK specially,
avoiding any network traffic for the case of one machine talking to itself.

uint32_t INADDR_ANY [Macro]
You can use this constant to stand for “any incoming address” when binding to an
address. See Section 16.3.2 [Setting the Address of a Socket], page 431. This is the
usual address to give in the sin_addr member of struct sockaddr_in when you
want to accept Internet connections.

uint32_t INADDR_BROADCAST [Macro]
This constant is the address you use to send a broadcast message.

uint32_t INADDR_NONE [Macro]
This constant is returned by some functions to indicate an error.

struct in6_addr [Data Type]
This data type is used to store an IPv6 address. It stores 128 bits of data, which can
be accessed (via a union) in a variety of ways.

struct in6_addr in6addr_loopback [Constant]
This constant is the IPv6 address ‘::1’, the loopback address. See above for a de-
scription of what this means. The macro IN6ADDR_LOOPBACK_INIT is provided to
allow you to initialize your own variables to this value.

struct in6_addr in6addr_any [Constant]
This constant is the IPv6 address ‘::’, the unspecified address. See above for a
description of what this means. The macro IN6ADDR_ANY_INIT is provided to allow
you to initialize your own variables to this value.

16.6.2.3 Host Address Functions

These additional functions for manipulating Internet addresses are declared in the header
file arpa/inet.h. They represent Internet addresses in network byte order, and network
numbers and local-address-within-network numbers in host byte order. See Section 16.6.5
[Byte Order Conversion|, page 447, for an explanation of network and host byte order.

int inet_aton (const char *name, struct in_addr *addr) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.

Chapter 16: Sockets 440

This function converts the IPv4 Internet host address name from the standard
numbers-and-dots notation into binary data and stores it in the struct in_addr
that addr points to. inet_aton returns nonzero if the address is valid, zero if not.

uint32_t inet_addr (const char *name) [Function]

Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.

This function converts the IPv4 Internet host address name from the standard
numbers-and-dots notation into binary data. If the input is not valid, inet_addr
returns INADDR_NONE. This is an obsolete interface to inet_aton, described
immediately above. It is obsolete because INADDR_NONE is a valid address
(255.255.255.255), and inet_aton provides a cleaner way to indicate error return.

uint32_t inet_network (const char *name) [Function]

Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.

This function extracts the network number from the address name, given in the
standard numbers-and-dots notation. The returned address is in host order. If the
input is not valid, inet_network returns -1.

The function works only with traditional IPv4 class A, B and C network types. It
doesn’t work with classless addresses and shouldn’t be used anymore.

char * inet_ntoa (struct in_addr addr) [Function]
Preliminary: | MT-Safe locale | AS-Unsafe race | AC-Safe | See Section 1.2.2.1
[POSIX Safety Concepts], page 2.
This function converts the IPv4 Internet host address addr to a string in the standard
numbers-and-dots notation. The return value is a pointer into a statically-allocated
buffer. Subsequent calls will overwrite the same buffer, so you should copy the string
if you need to save it.
In multi-threaded programs each thread has an own statically-allocated buffer. But
still subsequent calls of inet_ntoa in the same thread will overwrite the result of the
last call.
Instead of inet_ntoa the newer function inet_ntop which is described below should
be used since it handles both ITPv4 and IPv6 addresses.

struct in_addr inet_makeaddr (uint32_t net, uint32_t local) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.
This function makes an IPv4 Internet host address by combining the network number
net with the local-address-within-network number local.

uint32_t inet_lnaof (struct in_addr addr) [Function]

Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

This function returns the local-address-within-network part of the Internet host ad-
dress addr.

The function works only with traditional IPv4 class A, B and C network types. It
doesn’t work with classless addresses and shouldn’t be used anymore.

Chapter 16: Sockets 441

uint32_t inet_netof (struct in_addr addr) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

This function returns the network number part of the Internet host address addr.

The function works only with traditional IPv4 class A, B and C network types. It
doesn’t work with classless addresses and shouldn’t be used anymore.

int inet_pton (int af, const char *cp, void *buf) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.

This function converts an Internet address (either IPv4 or IPv6) from presentation
(textual) to network (binary) format. af should be either AF_INET or AF_INET6, as
appropriate for the type of address being converted. cp is a pointer to the input
string, and buf is a pointer to a buffer for the result. It is the caller’s responsibility
to make sure the buffer is large enough.

const char * inet_ntop (int af, const void *cp, char *buf, socklen_t [Function]
len)
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.

This function converts an Internet address (either IPv4 or IPv6) from network (bi-
nary) to presentation (textual) form. af should be either AF_INET or AF_INET6, as
appropriate. cp is a pointer to the address to be converted. buf should be a pointer
to a buffer to hold the result, and len is the length of this buffer. The return value
from the function will be this buffer address.

16.6.2.4 Host Names

Besides the standard numbers-and-dots notation for Internet addresses, you can also refer
to a host by a symbolic name. The advantage of a symbolic name is that it is usually easier
to remember. For example, the machine with Internet address ‘158.121.106.19’ is also
known as ‘alpha.gnu.org’; and other machines in the ‘gnu.org’ domain can refer to it
simply as ‘alpha’.

Internally, the system uses a database to keep track of the mapping between host names
and host numbers. This database is usually either the file /etc/hosts or an equivalent
provided by a name server. The functions and other symbols for accessing this database
are declared in netdb.h. They are BSD features, defined unconditionally if you include
netdb.h.

struct hostent [Data Type]
This data type is used to represent an entry in the hosts database. It has the following
members:

char *xh_name
This is the “official” name of the host.

char **xh_aliases
These are alternative names for the host, represented as a null-terminated
vector of strings.

Chapter 16: Sockets 442

int h_addrtype
This is the host address type; in practice, its value is always either AF_
INET or AF_INETS6, with the latter being used for IPv6 hosts. In principle
other kinds of addresses could be represented in the database as well as
Internet addresses; if this were done, you might find a value in this field
other than AF_INET or AF_INET6. See Section 16.3 [Socket Addresses|,
page 429.

int h_length
This is the length, in bytes, of each address.

char **xh_addr_list
This is the vector of addresses for the host. (Recall that the host might
be connected to multiple networks and have different addresses on each
one.) The vector is terminated by a null pointer.

char *h_addr
This is a synonym for h_addr_1ist [0]; in other words, it is the first host
address.

As far as the host database is concerned, each address is just a block of memory h_
length bytes long. But in other contexts there is an implicit assumption that you can
convert IPv4 addresses to a struct in_addr or an uint32_t. Host addresses in a struct
hostent structure are always given in network byte order; see Section 16.6.5 [Byte Order
Conversion], page 447.

You can use gethostbyname, gethostbyname2 or gethostbyaddr to search the hosts
database for information about a particular host. The information is returned in a statically-
allocated structure; you must copy the information if you need to save it across calls. You
can also use getaddrinfo and getnameinfo to obtain this information.

struct hostent * gethostbyname (const char *name) [Function]
Preliminary: | MT-Unsafe race:hostbyname env locale | AS-Unsafe dlopen plugin
corrupt heap lock | AC-Unsafe lock corrupt mem fd | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.

The gethostbyname function returns information about the host named name. If the
lookup fails, it returns a null pointer.

struct hostent * gethostbyname2 (const char *name, int af) [Function]
Preliminary: | MT-Unsafe race:hostbyname2 env locale | AS-Unsafe dlopen plugin
corrupt heap lock | AC-Unsafe lock corrupt mem fd | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.

The gethostbyname?2 function is like gethostbyname, but allows the caller to specify
the desired address family (e.g. AF_INET or AF_INET6) of the result.

struct hostent * gethostbyaddr (const void *addr, socklen_t [Function]
length, int format)

Preliminary: | MT-Unsafe race:hostbyaddr env locale | AS-Unsafe dlopen plugin

corrupt heap lock | AC-Unsafe lock corrupt mem fd | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.

Chapter 16: Sockets 443

The gethostbyaddr function returns information about the host with Internet ad-
dress addr. The parameter addr is not really a pointer to char - it can be a pointer to
an IPv4 or an IPv6 address. The length argument is the size (in bytes) of the address
at addr. format specifies the address format; for an IPv4 Internet address, specify a
value of AF_INET; for an IPv6 Internet address, use AF_INETS.

If the lookup fails, gethostbyaddr returns a null pointer.

If the name lookup by gethostbyname or gethostbyaddr fails, you can find out the
reason by looking at the value of the variable h_errno. (It would be cleaner design for
these functions to set errno, but use of h_errno is compatible with other systems.)

Here are the error codes that you may find in h_errno:

HOST_NOT_FOUND
No such host is known in the database.

TRY_AGAIN
This condition happens when the name server could not be contacted. If you
try again later, you may succeed then.

NO_RECOVERY
A non-recoverable error occurred.

NO_ADDRESS
The host database contains an entry for the name, but it doesn’t have an
associated Internet address.

The lookup functions above all have one in common: they are not reentrant and therefore
unusable in multi-threaded applications. Therefore provides the GNU C Library a new set
of functions which can be used in this context.

int gethostbyname_r (const char *restrict name, struct hostent *restrict [Function]

result_buf, char *restrict buf, size_t buflen, struct hostent **restrict
result, int *restrict h_errnop)

Preliminary: | MT-Safe env locale | AS-Unsafe dlopen plugin corrupt heap lock

| AC-Unsafe lock corrupt mem fd | See Section 1.2.2.1 [POSIX Safety Concepts],

page 2.

The gethostbyname_r function returns information about the host named name.

The caller must pass a pointer to an object of type struct hostent in the result_buf

parameter. In addition the function may need extra buffer space and the caller must

pass an pointer and the size of the buffer in the buf and buflen parameters.

A pointer to the buffer, in which the result is stored, is available in *result after the
function call successfully returned. The buffer passed as the buf parameter can be
freed only once the caller has finished with the result hostent struct, or has copied
it including all the other memory that it points to. If an error occurs or if no entry
is found, the pointer *result is a null pointer. Success is signalled by a zero return
value. If the function failed the return value is an error number. In addition to the
errors defined for gethostbyname it can also be ERANGE. In this case the call should
be repeated with a larger buffer. Additional error information is not stored in the
global variable h_errno but instead in the object pointed to by h_errnop.

Here’s a small example:

Chapter 16: Sockets 444

struct hostent *
gethostname (char *host)
{
struct hostent *hostbuf, *hp;
size_t hstbuflen;
char *tmphstbuf;
int res;
int herr;

hostbuf = malloc (sizeof (struct hostent));
hstbuflen 1024;
tmphstbuf = malloc (hstbuflen);

while ((res = gethostbyname_r (host, hostbuf, tmphstbuf, hstbuflen,
&hp, &herr)) == ERANGE)
{
/* Enlarge the buffer. */
hstbuflen *= 2;
tmphstbuf = realloc (tmphstbuf, hstbuflen);
}

free (tmphstbuf);

/* Check for errors. */

if (res || hp == NULL)
return NULL;

return hp;

}

int gethostbyname2_r (const char *name, int af, struct hostent [Function]

*restrict result_buf, char *restrict buf, size_t buflen, struct hostent
**restrict result, int *restrict h_errnop)

Preliminary: | MT-Safe env locale | AS-Unsafe dlopen plugin corrupt heap lock

| AC-Unsafe lock corrupt mem fd | See Section 1.2.2.1 [POSIX Safety Concepts],

page 2.

The gethostbyname2_r function is like gethostbyname_r, but allows the caller to

specify the desired address family (e.g. AF_INET or AF_INET6) for the result.

int gethostbyaddr_r (const void *addr, socklen_t length, int format, [Function]

struct hostent *restrict result_buf, char *restrict buf, size_t buflen, struct
hostent **restrict result, int *restrict h_errnop)

Preliminary: | MT-Safe env locale | AS-Unsafe dlopen plugin corrupt heap lock

| AC-Unsafe lock corrupt mem fd | See Section 1.2.2.1 [POSIX Safety Concepts],

page 2.

The gethostbyaddr_r function returns information about the host with Internet

address addr. The parameter addr is not really a pointer to char - it can be a pointer

to an IPv4 or an IPv6 address. The length argument is the size (in bytes) of the

address at addr. format specifies the address format; for an IPv4 Internet address,

specify a value of AF_INET; for an IPv6 Internet address, use AF_INET6.

Similar to the gethostbyname_r function, the caller must provide buffers for the
result and memory used internally. In case of success the function returns zero.
Otherwise the value is an error number where ERANGE has the special meaning that
the caller-provided buffer is too small.

Chapter 16: Sockets 445

You can also scan the entire hosts database one entry at a time using sethostent,
gethostent and endhostent. Be careful when using these functions because they are not
reentrant.

void sethostent (int stayopen) [Function]
Preliminary: | MT-Unsafe race:hostent env locale | AS-Unsafe dlopen plugin heap
lock | AC-Unsafe corrupt lock fd mem | See Section 1.2.2.1 [POSIX Safety Concepts],
page 2.
This function opens the hosts database to begin scanning it. You can then call
gethostent to read the entries.

If the stayopen argument is nonzero, this sets a flag so that subsequent calls to
gethostbyname or gethostbyaddr will not close the database (as they usually would).
This makes for more efficiency if you call those functions several times, by avoiding
reopening the database for each call.

struct hostent * gethostent (void) [Function]
Preliminary: | MT-Unsafe race:hostent race:hostentbuf env locale | AS-Unsafe
dlopen plugin heap lock | AC-Unsafe corrupt lock fd mem | See Section 1.2.2.1
[POSIX Safety Concepts], page 2.

This function returns the next entry in the hosts database. It returns a null pointer
if there are no more entries.

void endhostent (void) [Function]
Preliminary: | MT-Unsafe race:hostent env locale | AS-Unsafe dlopen plugin heap
lock | AC-Unsafe corrupt lock fd mem | See Section 1.2.2.1 [POSIX Safety Concepts],
page 2.

This function closes the hosts database.

16.6.3 Internet Ports

A socket address in the Internet namespace consists of a machine’s Internet address plus
a port number which distinguishes the sockets on a given machine (for a given protocol).
Port numbers range from 0 to 65,535.

Port numbers less than IPPORT_RESERVED are reserved for standard servers, such as
finger and telnet. There is a database that keeps track of these, and you can use the
getservbyname function to map a service name onto a port number; see Section 16.6.4 [The
Services Database], page 446.

If you write a server that is not one of the standard ones defined in the database, you
must choose a port number for it. Use a number greater than IPPORT_USERRESERVED; such
numbers are reserved for servers and won’t ever be generated automatically by the system.
Avoiding conflicts with servers being run by other users is up to you.

When you use a socket without specifying its address, the system generates a port
number for it. This number is between IPPORT_RESERVED and IPPORT_USERRESERVED.

On the Internet, it is actually legitimate to have two different sockets with the same
port number, as long as they never both try to communicate with the same socket address
(host address plus port number). You shouldn’t duplicate a port number except in special
circumstances where a higher-level protocol requires it. Normally, the system won’t let you

Chapter 16: Sockets 446

do it; bind normally insists on distinct port numbers. To reuse a port number, you must
set the socket option SO_REUSEADDR. See Section 16.12.2 [Socket-Level Options|, page 471.

These macros are defined in the header file netinet/in.h.

int IPPORT_RESERVED [Macro]
Port numbers less than IPPORT_RESERVED are reserved for superuser use.

int IPPORT_USERRESERVED [Macro]
Port numbers greater than or equal to IPPORT_USERRESERVED are reserved for explicit
use; they will never be allocated automatically.

16.6.4 The Services Database

The database that keeps track of “well-known” services is usually either the file
/etc/services or an equivalent from a name server. You can use these utilities, declared
in netdb.h, to access the services database.

struct servent [Data Type]
This data type holds information about entries from the services database. It has the
following members:

char *s_name
This is the “official” name of the service.

char **xs_aliases
These are alternate names for the service, represented as an array of
strings. A null pointer terminates the array.

int s_port
This is the port number for the service. Port numbers are given in network
byte order; see Section 16.6.5 [Byte Order Conversion], page 447.

char *s_proto
This is the name of the protocol to use with this service. See Section 16.6.6
[Protocols Database], page 448.

To get information about a particular service, use the getservbyname or getservbyport
functions. The information is returned in a statically-allocated structure; you must copy
the information if you need to save it across calls.

struct servent * getservbyname (const char *name, const char [Function]
*proto)
Preliminary: | MT-Unsafe race:servbyname locale | AS-Unsafe dlopen plugin heap
lock | AC-Unsafe corrupt lock fd mem | See Section 1.2.2.1 [POSIX Safety Concepts],
page 2.
The getservbyname function returns information about the service named name
using protocol proto. If it can’t find such a service, it returns a null pointer.

This function is useful for servers as well as for clients; servers use it to determine
which port they should listen on (see Section 16.9.2 [Listening for Connections],
page 455).

Chapter 16: Sockets 447

struct servent * getservbyport (int port, const char *proto) [Function]
Preliminary: | MT-Unsafe race:servbyport locale | AS-Unsafe dlopen plugin heap
lock | AC-Unsafe corrupt lock fd mem | See Section 1.2.2.1 [POSIX Safety Concepts],
page 2.
The getservbyport function returns information about the service at port port using
protocol proto. If it can’t find such a service, it returns a null pointer.

You can also scan the services database using setservent, getservent and endservent.
Be careful when using these functions because they are not reentrant.

void setservent (int stayopen) [Function]
Preliminary: | MT-Unsafe race:servent locale | AS-Unsafe dlopen plugin heap lock
| AC-Unsafe corrupt lock fd mem | See Section 1.2.2.1 [POSIX Safety Concepts],
page 2.

This function opens the services database to begin scanning it.

If the stayopen argument is nonzero, this sets a flag so that subsequent calls to
getservbyname or getservbyport will not close the database (as they usually would).
This makes for more efficiency if you call those functions several times, by avoiding
reopening the database for each call.

struct servent * getservent (void) [Function]
Preliminary: | MT-Unsafe race:servent race:serventbuf locale | AS-Unsafe dlopen
plugin heap lock | AC-Unsafe corrupt lock fd mem | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.

This function returns the next entry in the services database. If there are no more
entries, it returns a null pointer.

void endservent (void) [Function]
Preliminary: | MT-Unsafe race:servent locale | AS-Unsafe dlopen plugin heap lock
| AC-Unsafe corrupt lock fd mem | See Section 1.2.2.1 [POSIX Safety Concepts],
page 2.

This function closes the services database.

16.6.5 Byte Order Conversion

Different kinds of computers use different conventions for the ordering of bytes within a
word. Some computers put the most significant byte within a word first (this is called
“big-endian” order), and others put it last (“little-endian” order).

So that machines with different byte order conventions can communicate, the Internet
protocols specify a canonical byte order convention for data transmitted over the network.
This is known as network byte order.

When establishing an Internet socket connection, you must make sure that the data
in the sin_port and sin_addr members of the sockaddr_in structure are represented in
network byte order. If you are encoding integer data in the messages sent through the socket,
you should convert this to network byte order too. If you don’t do this, your program may
fail when running on or talking to other kinds of machines.

Chapter 16: Sockets 448

If you use getservbyname and gethostbyname or inet_addr to get the port number
and host address, the values are already in network byte order, and you can copy them
directly into the sockaddr_in structure.

Otherwise, you have to convert the values explicitly. Use htons and ntohs to convert
values for the sin_port member. Use htonl and ntohl to convert IPv4 addresses for
the sin_addr member. (Remember, struct in_addr is equivalent to uint32_t.) These
functions are declared in netinet/in.h.

uint16_t htons (uintl6_t hostshort) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety

Concepts|, page 2.

This function converts the uint16_t integer hostshort from host byte order to network
byte order.

uint16_t ntohs (uintl6_t netshort) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety

Concepts], page 2.
This function converts the uint16_t integer netshort from network byte order to host
byte order.

uint32_t htonl (uint32_t hostlong) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety

Concepts], page 2.
This function converts the uint32_t integer hostlong from host byte order to network
byte order.

This is used for IPv4 Internet addresses.

uint32_t ntohl (uint32_t netlong) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

This function converts the uint32_t integer netlong from network byte order to host
byte order.

This is used for IPv4 Internet addresses.

16.6.6 Protocols Database

The communications protocol used with a socket controls low-level details of how data are
exchanged. For example, the protocol implements things like checksums to detect errors
in transmissions, and routing instructions for messages. Normal user programs have little
reason to mess with these details directly.

The default communications protocol for the Internet namespace depends on the com-
munication style. For stream communication, the default is TCP (“transmission control
protocol”). For datagram communication, the default is UDP (“user datagram protocol”).
For reliable datagram communication, the default is RDP (“reliable datagram protocol”).
You should nearly always use the default.

Internet protocols are generally specified by a name instead of a number. The network
protocols that a host knows about are stored in a database. This is usually either derived

Chapter 16: Sockets 449

from the file /etc/protocols, or it may be an equivalent provided by a name server. You
look up the protocol number associated with a named protocol in the database using the
getprotobyname function.

Here are detailed descriptions of the utilities for accessing the protocols database. These
are declared in netdb.h.

struct protoent [Data Type]
This data type is used to represent entries in the network protocols database. It has
the following members:

char *p_name
This is the official name of the protocol.

char *xp_aliases
These are alternate names for the protocol, specified as an array of strings.
The last element of the array is a null pointer.

int p_proto
This is the protocol number (in host byte order); use this member as the
protocol argument to socket.

You can use getprotobyname and getprotobynumber to search the protocols database
for a specific protocol. The information is returned in a statically-allocated structure; you
must copy the information if you need to save it across calls.

struct protoent * getprotobyname (const char *name) [Function]
Preliminary: | MT-Unsafe race:protobyname locale | AS-Unsafe dlopen plugin heap
lock | AC-Unsafe corrupt lock fd mem | See Section 1.2.2.1 [POSIX Safety Concepts],
page 2.
The getprotobyname function returns information about the network protocol named
name. If there is no such protocol, it returns a null pointer.

struct protoent * getprotobynumber (int protocol) [Function]
Preliminary: | MT-Unsafe race:protobynumber locale | AS-Unsafe dlopen plugin
heap lock | AC-Unsafe corrupt lock fd mem | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

The getprotobynumber function returns information about the network protocol with
number protocol. If there is no such protocol, it returns a null pointer.

You can also scan the whole protocols database one protocol at a time by using
setprotoent, getprotoent and endprotoent. Be careful when using these functions
because they are not reentrant.

void setprotoent (int stayopen) [Function]
Preliminary: | MT-Unsafe race:protoent locale | AS-Unsafe dlopen plugin heap lock
| AC-Unsafe corrupt lock fd mem | See Section 1.2.2.1 [POSIX Safety Concepts],
page 2.
This function opens the protocols database to begin scanning it.
If the stayopen argument is nonzero, this sets a flag so that subsequent calls to
getprotobyname or getprotobynumber will not close the database (as they usually

Chapter 16: Sockets 450

would). This makes for more efficiency if you call those functions several times, by
avoiding reopening the database for each call.

struct protoent * getprotoent (void) [Function]
Preliminary: | MT-Unsafe race:protoent race:protoentbuf locale | AS-Unsafe dlopen
plugin heap lock | AC-Unsafe corrupt lock fd mem | See Section 1.2.2.1 [POSIX

Safety Concepts|, page 2.

This function returns the next entry in the protocols database. It returns a null
pointer if there are no more entries.

void endprotoent (void) [Function]
Preliminary: | MT-Unsafe race:protoent locale | AS-Unsafe dlopen plugin heap lock
| AC-Unsafe corrupt lock fd mem | See Section 1.2.2.1 [POSIX Safety Concepts],
page 2.

This function closes the protocols database.

16.6.7 Internet Socket Example

Here is an example showing how to create and name a socket in the Internet namespace.
The newly created socket exists on the machine that the program is running on. Rather
than finding and using the machine’s Internet address, this example specifies INADDR_ANY
as the host address; the system replaces that with the machine’s actual address.

#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <netinet/in.h>

int
make_socket (uint16_t port)
{

int sock;

struct sockaddr_in name;

/* Create the socket. */
sock = socket (PF_INET, SOCK_STREAM, 0);
if (sock < 0)
{
perror ("socket");
exit (EXIT_FAILURE);
¥

/* Give the socket a name. */
name.sin_family = AF_INET;
name.sin_port = htons (port);
name.sin_addr.s_addr = htonl (INADDR_ANY);
if (bind (sock, (struct sockaddr *) &name, sizeof (name)) < 0)
{
perror ("bind");
exit (EXIT_FAILURE);
}

return sock;

Chapter 16: Sockets 451

Here is another example, showing how you can fill in a sockaddr_in structure, given a
host name string and a port number:

#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

void

init_sockaddr (struct sockaddr_in *name,
const char *hostname,
uint16_t port)

struct hostent *hostinfo;

name->sin_family = AF_INET;
name->sin_port = htons (port);
hostinfo = gethostbyname (hostname);
if (hostinfo == NULL)

{

fprintf (stderr, "Unknown host %s.\n", hostname);
exit (EXIT_FAILURE);
}

name->sin_addr = *(struct in_addr *) hostinfo->h_addr;

16.7 Other Namespaces

Certain other namespaces and associated protocol families are supported but not docu-
mented yet because they are not often used. PF_NS refers to the Xerox Network Software
protocols. PF_ISO stands for Open Systems Interconnect. PF_CCITT refers to protocols
from CCITT. socket.h defines these symbols and others naming protocols not actually
implemented.

PF_IMPLINK is used for communicating between hosts and Internet Message Processors.
For information on this and PF_ROUTE, an occasionally-used local area routing protocol, see
the GNU Hurd Manual (to appear in the future).

16.8 Opening and Closing Sockets

This section describes the actual library functions for opening and closing sockets. The
same functions work for all namespaces and connection styles.

16.8.1 Creating a Socket

The primitive for creating a socket is the socket function, declared in sys/socket.h.

int socket (int namespace, int style, int protocol) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe fd | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

This function creates a socket and specifies communication style style, which should be
one of the socket styles listed in Section 16.2 [Communication Styles], page 428. The
namespace argument specifies the namespace; it must be PF_LOCAL (see Section 16.5

Chapter 16: Sockets 452

[The Local Namespace|, page 433) or PF_INET (see Section 16.6 [The Internet Names-
pace], page 435). protocol designates the specific protocol (see Section 16.1 [Socket
Concepts|, page 427); zero is usually right for protocol.

The return value from socket is the file descriptor for the new socket, or -1 in case
of error. The following errno error conditions are defined for this function:

EPROTONOSUPPORT
The protocol or style is not supported by the namespace specified.

EMFILE The process already has too many file descriptors open.
ENFILE The system already has too many file descriptors open.

EACCES The process does not have the privilege to create a socket of the specified
style or protocol.

ENOBUFS The system ran out of internal buffer space.

The file descriptor returned by the socket function supports both read and write
operations. However, like pipes, sockets do not support file positioning operations.

For examples of how to call the socket function, see Section 16.5.3 [Example of Local-
Namespace Sockets|, page 434, or Section 16.6.7 [Internet Socket Example|, page 450.

16.8.2 Closing a Socket

When you have finished using a socket, you can simply close its file descriptor with close;
see Section 13.1 [Opening and Closing Files], page 322. If there is still data waiting to be
transmitted over the connection, normally close tries to complete this transmission. You
can control this behavior using the SO_LINGER socket option to specify a timeout period;
see Section 16.12 [Socket Options|, page 470.

You can also shut down only reception or transmission on a connection by calling
shutdown, which is declared in sys/socket.h.

int shutdown (int socket, int how) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

The shutdown function shuts down the connection of socket socket. The argument
how specifies what action to perform:

0 Stop receiving data for this socket. If further data arrives, reject it.

1 Stop trying to transmit data from this socket. Discard any data waiting
to be sent. Stop looking for acknowledgement of data already sent; don’t
retransmit it if it is lost.

2 Stop both reception and transmission.

The return value is 0 on success and -1 on failure. The following errno error condi-
tions are defined for this function:

EBADF socket is not a valid file descriptor.
ENOTSOCK socket is not a socket.
ENOTCONN socket is not connected.

Chapter 16: Sockets 453

16.8.3 Socket Pairs

A socket pair consists of a pair of connected (but unnamed) sockets. It is very similar to
a pipe and is used in much the same way. Socket pairs are created with the socketpair
function, declared in sys/socket.h. A socket pair is much like a pipe; the main difference
is that the socket pair is bidirectional, whereas the pipe has one input-only end and one
output-only end (see Chapter 15 [Pipes and FIFOs]|, page 422).

int socketpair (int namespace, int style, int protocol, int [Function]
filedes[2])

Preliminary: | MT-Safe | AS-Safe | AC-Safe fd | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.
This function creates a socket pair, returning the file descriptors in filedes[0] and
filedes[1]. The socket pair is a full-duplex communications channel, so that both
reading and writing may be performed at either end.
The namespace, style and protocol arguments are interpreted as for the socket func-
tion. style should be one of the communication styles listed in Section 16.2 [Commu-
nication Styles|, page 428. The namespace argument specifies the namespace, which
must be AF_LOCAL (see Section 16.5 [The Local Namespace|, page 433); protocol
specifies the communications protocol, but zero is the only meaningful value.
If style specifies a connectionless communication style, then the two sockets you get
are not connected, strictly speaking, but each of them knows the other as the default
destination address, so they can send packets to each other.

The socketpair function returns 0 on success and -1 on failure. The following errno
error conditions are defined for this function:
EMFILE The process has too many file descriptors open.

EAFNOSUPPORT
The specified namespace is not supported.

EPROTONOSUPPORT
The specified protocol is not supported.

EOPNQTSUPP
The specified protocol does not support the creation of socket pairs.

16.9 Using Sockets with Connections

The most common communication styles involve making a connection to a particular other
socket, and then exchanging data with that socket over and over. Making a connection is
asymmetric; one side (the client) acts to request a connection, while the other side (the
server) makes a socket and waits for the connection request.

e Section 16.9.1 [Making a Connection], page 454, describes what the client program
must do to initiate a connection with a server.

e Section 16.9.2 [Listening for Connections|, page 455 and Section 16.9.3 [Accepting
Connections|, page 455 describe what the server program must do to wait for and act
upon connection requests from clients.

e Section 16.9.5 [Transferring Datal, page 457, describes how data are transferred through
the connected socket.

Chapter 16: Sockets 454

16.9.1 Making a Connection

In making a connection, the client makes a connection while the server waits for and accepts
the connection. Here we discuss what the client program must do with the connect function,
which is declared in sys/socket.h.

int connect (int socket, struct sockaddr *addr, socklen_t length) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.
The connect function initiates a connection from the socket with file descriptor socket
to the socket whose address is specified by the addr and length arguments. (This
socket is typically on another machine, and it must be already set up as a server.) See
Section 16.3 [Socket Addresses], page 429, for information about how these arguments
are interpreted.
Normally, connect waits until the server responds to the request before it returns.
You can set nonblocking mode on the socket socket to make connect return immedi-
ately without waiting for the response. See Section 13.14 [File Status Flags], page 362,
for information about nonblocking mode.
The normal return value from connect is 0. If an error occurs, connect returns -1.
The following errno error conditions are defined for this function:

EBADF The socket socket is not a valid file descriptor.
ENOTSOCK File descriptor socket is not a socket.

EADDRNQOTAVAIL
The specified address is not available on the remote machine.

EAFNOSUPPORT
The namespace of the addr is not supported by this socket.

EISCONN The socket socket is already connected.

ETIMEDQUT

The attempt to establish the connection timed out.
ECONNREFUSED

The server has actively refused to establish the connection.
ENETUNREACH

The network of the given addr isn’t reachable from this host.
EADDRINUSE

The socket address of the given addr is already in use.
EINPROGRESS

The socket socket is non-blocking and the connection could not be estab-
lished immediately. You can determine when the connection is completely
established with select; see Section 13.8 [Waiting for Input or Output],
page 341. Another connect call on the same socket, before the connection
is completely established, will fail with EALREADY.

EALREADY The socket socket is non-blocking and already has a pending connection
in progress (see EINPROGRESS above).

Chapter 16: Sockets 455

This function is defined as a cancellation point in multi-threaded programs, so one
has to be prepared for this and make sure that allocated resources (like memory, files
descriptors, semaphores or whatever) are freed even if the thread is canceled.

16.9.2 Listening for Connections

Now let us consider what the server process must do to accept connections on a socket. First
it must use the listen function to enable connection requests on the socket, and then accept
each incoming connection with a call to accept (see Section 16.9.3 [Accepting Connections],
page 455). Once connection requests are enabled on a server socket, the select function
reports when the socket has a connection ready to be accepted (see Section 13.8 [Waiting
for Input or Output], page 341).

The listen function is not allowed for sockets using connectionless communication
styles.

You can write a network server that does not even start running until a connection to it
is requested. See Section 16.11.1 [inetd Servers|, page 469.

In the Internet namespace, there are no special protection mechanisms for controlling
access to a port; any process on any machine can make a connection to your server. If
you want to restrict access to your server, make it examine the addresses associated with
connection requests or implement some other handshaking or identification protocol.

In the local namespace, the ordinary file protection bits control who has access to connect
to the socket.

int listen (int socket, int n) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe fd | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

The 1listen function enables the socket socket to accept connections, thus making it
a server socket.

The argument n specifies the length of the queue for pending connections. When the
queue fills, new clients attempting to connect fail with ECONNREFUSED until the server
calls accept to accept a connection from the queue.

The listen function returns O on success and -1 on failure. The following errno
error conditions are defined for this function:

EBADF The argument socket is not a valid file descriptor.

ENOTSOCK The argument socket is not a socket.

EOPNQOTSUPP
The socket socket does not support this operation.

16.9.3 Accepting Connections

When a server receives a connection request, it can complete the connection by accepting
the request. Use the function accept to do this.

A socket that has been established as a server can accept connection requests from
multiple clients. The server’s original socket does not become part of the connection; instead,
accept makes a new socket which participates in the connection. accept returns the

Chapter 16: Sockets 456

descriptor for this socket. The server’s original socket remains available for listening for
further connection requests.

The number of pending connection requests on a server socket is finite. If connection
requests arrive from clients faster than the server can act upon them, the queue can fill
up and additional requests are refused with an ECONNREFUSED error. You can specify the
maximum length of this queue as an argument to the listen function, although the system
may also impose its own internal limit on the length of this queue.

int accept (int socket, struct sockaddr *addr, socklen_t *1ength_ptr) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe fd | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

This function is used to accept a connection request on the server socket socket.

The accept function waits if there are no connections pending, unless the socket
socket has nonblocking mode set. (You can use select to wait for a pending connec-
tion, with a nonblocking socket.) See Section 13.14 [File Status Flags|, page 362, for
information about nonblocking mode.

The addr and length-ptr arguments are used to return information about the name
of the client socket that initiated the connection. See Section 16.3 [Socket Addresses],
page 429, for information about the format of the information.

Accepting a connection does not make socket part of the connection. Instead, it
creates a new socket which becomes connected. The normal return value of accept
is the file descriptor for the new socket.

After accept, the original socket socket remains open and unconnected, and continues
listening until you close it. You can accept further connections with socket by calling
accept again.

If an error occurs, accept returns -1. The following errno error conditions are defined
for this function:

EBADF The socket argument is not a valid file descriptor.

ENOTSOCK The descriptor socket argument is not a socket.

EOPNQTSUPP
The descriptor socket does not support this operation.

EWOULDBLOCK
socket has nonblocking mode set, and there are no pending connections
immediately available.

This function is defined as a cancellation point in multi-threaded programs, so one
has to be prepared for this and make sure that allocated resources (like memory, files
descriptors, semaphores or whatever) are freed even if the thread is canceled.

The accept function is not allowed for sockets using connectionless communication
styles.

Chapter 16: Sockets 457

16.9.4 Who is Connected to Me?

int getpeername (int socket, struct sockaddr *addr, socklen_t [Function]
*length-ptr)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.
The getpeername function returns the address of the socket that socket is connected
to; it stores the address in the memory space specified by addr and length-ptr. It
stores the length of the address in *Iength-ptr.

See Section 16.3 [Socket Addresses|, page 429, for information about the format of
the address. In some operating systems, getpeername works only for sockets in the
Internet domain.

The return value is 0 on success and -1 on error. The following errno error conditions
are defined for this function:

EBADF The argument socket is not a valid file descriptor.
ENOTSOCK The descriptor socket is not a socket.

ENOTCONN The socket socket is not connected.

ENOBUFS There are not enough internal buffers available.

16.9.5 Transferring Data

Once a socket has been connected to a peer, you can use the ordinary read and write
operations (see Section 13.2 [Input and Output Primitives|, page 325) to transfer data. A
socket is a two-way communications channel, so read and write operations can be performed
at either end.

There are also some I/0 modes that are specific to socket operations. In order to specify
these modes, you must use the recv and send functions instead of the more generic read
and write functions. The recv and send functions take an additional argument which you
can use to specify various flags to control special I/O modes. For example, you can specify
the MSG_00B flag to read or write out-of-band data, the MSG_PEEK flag to peek at input, or
the MSG_DONTROUTE flag to control inclusion of routing information on output.

16.9.5.1 Sending Data

The send function is declared in the header file sys/socket.h. If your flags argument is
zero, you can just as well use write instead of send; see Section 13.2 [Input and Output
Primitives], page 325. If the socket was connected but the connection has broken, you get
a SIGPIPE signal for any use of send or write (see Section 24.2.7 [Miscellaneous Signals],
page 668).

ssize_t send (int socket, const void *buffer, size_t size, int flags) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.
The send function is like write, but with the additional flags flags. The possible
values of flags are described in Section 16.9.5.3 [Socket Data Options], page 459.
This function returns the number of bytes transmitted, or -1 on failure. If the socket
is nonblocking, then send (like write) can return after sending just part of the data.

Chapter 16: Sockets 458

See Section 13.14 [File Status Flags|, page 362, for information about nonblocking
mode.

Note, however, that a successful return value merely indicates that the message has
been sent without error, not necessarily that it has been received without error.

The following errno error conditions are defined for this function:
EBADF The socket argument is not a valid file descriptor.

EINTR The operation was interrupted by a signal before any data was sent. See
Section 24.5 [Primitives Interrupted by Signals], page 685.

ENOTSOCK The descriptor socket is not a socket.

EMSGSIZE The socket type requires that the message be sent atomically, but the
message is too large for this to be possible.

EWOULDBLOCK
Nonblocking mode has been set on the socket, and the write operation
would block. (Normally send blocks until the operation can be com-
pleted.)

ENOBUFS There is not enough internal buffer space available.
ENOTCONN You never connected this socket.

EPIPE This socket was connected but the connection is now broken. In this case,
send generates a SIGPIPE signal first; if that signal is ignored or blocked,
or if its handler returns, then send fails with EPIPE.

This function is defined as a cancellation point in multi-threaded programs, so one
has to be prepared for this and make sure that allocated resources (like memory, files
descriptors, semaphores or whatever) are freed even if the thread is canceled.

16.9.5.2 Receiving Data

The recv function is declared in the header file sys/socket.h. If your flags argument is
zero, you can just as well use read instead of recv; see Section 13.2 [Input and Output
Primitives], page 325.

ssize_t recv (int socket, void *buffer, size_t size, int flags) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

The recv function is like read, but with the additional flags flags. The possible values
of flags are described in Section 16.9.5.3 [Socket Data Options|, page 459.

If nonblocking mode is set for socket, and no data are available to be read, recv fails
immediately rather than waiting. See Section 13.14 [File Status Flags], page 362, for
information about nonblocking mode.

This function returns the number of bytes received, or -1 on failure. The following
errno error conditions are defined for this function:

EBADF The socket argument is not a valid file descriptor.
ENOTSOCK The descriptor socket is not a socket.

Chapter 16: Sockets 459

EWOULDBLOCK
Nonblocking mode has been set on the socket, and the read operation
would block. (Normally, recv blocks until there is input available to be

read.)

EINTR The operation was interrupted by a signal before any data was read. See
Section 24.5 [Primitives Interrupted by Signals], page 685.

ENOTCONN You never connected this socket.

This function is defined as a cancellation point in multi-threaded programs, so one
has to be prepared for this and make sure that allocated resources (like memory, files
descriptors, semaphores or whatever) are freed even if the thread is canceled.

16.9.5.3 Socket Data Options

The flags argument to send and recv is a bit mask. You can bitwise-OR the values of the
following macros together to obtain a value for this argument. All are defined in the header
file sys/socket.h.

int MSG_00B [Macro]
Send or receive out-of-band data. See Section 16.9.8 [Out-of-Band Datal, page 462.

int MSG_PEEK [Macro]
Look at the data but don’t remove it from the input queue. This is only meaningful
with input functions such as recv, not with send.

int MSG_DONTROUTE [Macro]
Don’t include routing information in the message. This is only meaningful with
output operations, and is usually only of interest for diagnostic or routing programs.
We don’t try to explain it here.

16.9.6 Byte Stream Socket Example

Here is an example client program that makes a connection for a byte stream socket in the
Internet namespace. It doesn’t do anything particularly interesting once it has connected
to the server; it just sends a text string to the server and exits.

This program uses init_sockaddr to set up the socket address; see Section 16.6.7 [In-
ternet Socket Example], page 450.

#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

#define PORT 5555
#define MESSAGE "Yow!!! Are we having fun yet?!?"
#define SERVERHOST "www.gnu.org"

void

Chapter 16: Sockets 460

write_to_server (int filedes)
{
int nbytes;

nbytes = write (filedes, MESSAGE, strlen (MESSAGE) + 1);
if (nbytes < 0)
{
perror ("write");
exit (EXIT_FAILURE);
}

int
main (void)
{
extern void init_sockaddr (struct sockaddr_in *name,
const char *hostname,
uintl6_t port);
int sock;
struct sockaddr_in servername;

/* Create the socket. */
sock = socket (PF_INET, SOCK_STREAM, 0);
if (sock < 0)
{
perror ("socket (client)");
exit (EXIT_FAILURE);
}

/* Connect to the server. */

init_sockaddr (&servername, SERVERHOST, PORT);

if (0 > connect (sock,
(struct sockaddr *) &servername,
sizeof (servername)))

{

perror ("connect (client)");
exit (EXIT_FAILURE);
}

/* Send data to the server. */
write_to_server (sock);
close (sock);

exit (EXIT_SUCCESS);

16.9.7 Byte Stream Connection Server Example

The server end is much more complicated. Since we want to allow multiple clients to be
connected to the server at the same time, it would be incorrect to wait for input from a
single client by simply calling read or recv. Instead, the right thing to do is to use select
(see Section 13.8 [Waiting for Input or Output], page 341) to wait for input on all of the
open sockets. This also allows the server to deal with additional connection requests.

This particular server doesn’t do anything interesting once it has gotten a message from
a client. It does close the socket for that client when it detects an end-of-file condition
(resulting from the client shutting down its end of the connection).

Chapter 16: Sockets

461

This program uses make_socket to set up the socket address; see Section 16.6.7 [Internet
Socket Example], page 450.

#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

#define PORT 5555
#define MAXMSG 512

int
read_from_client (int filedes)

{

char buffer [MAXMSG] ;
int nbytes;

nbytes = read (filedes, buffer, MAXMSG);
if (nbytes < 0)
{
/* Read error. */
perror ("read");
exit (EXIT_FAILURE);
}
else if (nbytes == 0)
/* End-of-file. */
return -1;
else
{
/* Data read. */
fprintf (stderr, "Server: got message: ‘%s’\n", buffer);
return O;

}

int
main (void)

{

extern int make_socket (uintl6_t port);
int sock;

fd_set active_fd_set, read_fd_set;

int i;

struct sockaddr_in clientname;

size_t size;

/* Create the socket and set it up to accept connections. */
sock = make_socket (PORT);
if (listen (sock, 1) < 0)
{
perror ("listen");
exit (EXIT_FAILURE);
}

/* Initialize the set of active sockets. */

Chapter 16: Sockets 462

FD_ZERO (&active_fd_set);
FD_SET (sock, &active_fd_set);

while (1)
{
/* Block until input arrives on one or more active sockets. */
read_fd_set = active_fd_set;
if (select (FD_SETSIZE, &read_fd_set, NULL, NULL, NULL) < 0)
{
perror ("select");
exit (EXIT_FAILURE);
}

/* Service all the sockets with input pending. */
for (i = 0; i < FD_SETSIZE; ++i)
if (FD_ISSET (i, &read_fd_set))
{
if (i == sock)
{
/* Connection request on original socket. */
int new;
size = sizeof (clientname);
new = accept (sock,
(struct sockaddr *) &clientname,
&size);
if (new < 0)
{
perror ("accept");
exit (EXIT_FAILURE);
}
fprintf (stderr,
"Server: connect from host %s, port %hd.\n",
inet_ntoa (clientname.sin_addr),
ntohs (clientname.sin_port));
FD_SET (new, &active_fd_set);

else
{
/* Data arriving on an already-connected socket. */
if (read_from_client (i) < 0)
{

close (i);
FD_CLR (i, &active_fd_set);
}

}

16.9.8 Out-of-Band Data

Streams with connections permit out-of-band data that is delivered with higher priority
than ordinary data. Typically the reason for sending out-of-band data is to send notice of
an exceptional condition. To send out-of-band data use send, specifying the flag MSG_00B
(see Section 16.9.5.1 [Sending Datal, page 457).

Out-of-band data are received with higher priority because the receiving process need
not read it in sequence; to read the next available out-of-band data, use recv with the

Chapter 16: Sockets 463

MSG_00B flag (see Section 16.9.5.2 [Receiving Data|, page 458). Ordinary read operations
do not read out-of-band data; they read only ordinary data.

When a socket finds that out-of-band data are on their way, it sends a SIGURG signal
to the owner process or process group of the socket. You can specify the owner using
the F_SETOWN command to the fcntl function; see Section 13.18 [Interrupt-Driven Input],
page 374. You must also establish a handler for this signal, as described in Chapter 24
[Signal Handling], page 659, in order to take appropriate action such as reading the out-of-
band data.

Alternatively, you can test for pending out-of-band data, or wait until there is out-
of-band data, using the select function; it can wait for an exceptional condition on the
socket. See Section 13.8 [Waiting for Input or Output], page 341, for more information
about select.

Notification of out-of-band data (whether with SIGURG or with select) indicates that
out-of-band data are on the way; the data may not actually arrive until later. If you try to
read the out-of-band data before it arrives, recv fails with an EWOULDBLOCK error.

Sending out-of-band data automatically places a “mark” in the stream of ordinary data,
showing where in the sequence the out-of-band data “would have been”. This is useful when
the meaning of out-of-band data is “cancel everything sent so far”. Here is how you can
test, in the receiving process, whether any ordinary data was sent before the mark:

success = ioctl (socket, SIOCATMARK, &atmark);

The integer variable atmark is set to a nonzero value if the socket’s read pointer has
reached the “mark”.

Here’s a function to discard any ordinary data preceding the out-of-band mark:
int
discard_until_mark (int socket)
{
while (1)
{
/* This is not an arbitrary limit; any size will do. */
char buffer[1024];
int atmark, success;

/* If we have reached the mark, return. */
success = ioctl (socket, SIOCATMARK, &atmark);
if (success < 0)

perror ("ioctl");
if (result)

return;

/* Otherwise, read a bunch of ordinary data and discard it.
This is guaranteed not to read past the mark
if it starts before the mark. */
success = read (socket, buffer, sizeof buffer);
if (success < 0)
perror ("read");

}

If you don’t want to discard the ordinary data preceding the mark, you may need to
read some of it anyway, to make room in internal system buffers for the out-of-band data. If
you try to read out-of-band data and get an EWOULDBLOCK error, try reading some ordinary

Chapter 16: Sockets 464

data (saving it so that you can use it when you want it) and see if that makes room. Here
is an example:

struct buffer
{
char *buf;
int size;
struct buffer *next;

};

/* Read the out-of-band data from SOCKET and return it
as a ‘struct buffer’, which records the address of the data
and its size.

It may be necessary to read some ordinary data

in order to make room for the out-of-band data.

If so, the ordinary data are saved as a chain of buffers
found in the ‘next’ field of the value. */

struct buffer *
read_oob (int socket)

{
struct buffer *tail = O;

struct buffer *list = O;
while (1)
{

/* This is an arbitrary limit.
Does anyone know how to do this without a limit? */
#define BUF_SZ 1024
char *buf = (char *) xmalloc (BUF_SZ);
int success;
int atmark;

/* Try again to read the out-of-band data. */
success = recv (socket, buf, BUF_SZ, MSG_00B);
if (success >= 0)
{
/* We got it, so return it. */
struct buffer *link
= (struct buffer *) xmalloc (sizeof (struct buffer));

link->buf = buf;

link->size = success;

link->next = list;

return link;

}

/* If we fail, see if we are at the mark. */
success = ioctl (socket, SIOCATMARK, &atmark);
if (success < 0)
perror ("ioctl");
if (atmark)
{
/* At the mark; skipping past more ordinary data cannot help.
So just wait a while. */
sleep (1);
continue;

}

Chapter 16: Sockets 465

/* Otherwise, read a bunch of ordinary data and save it.
This is guaranteed not to read past the mark
if it starts before the mark. */
success = read (socket, buf, BUF_SZ);
if (success < 0)
perror ("read");

/* Save this data in the buffer list. */
{
struct buffer *1link
= (struct buffer *) xmalloc (sizeof (struct buffer));
link->buf = buf;
link->size = success;

/* Add the new link to the end of the list. */
if (tail)
tail->next = link;
else
list = link;
tail = link;

16.10 Datagram Socket Operations

This section describes how to use communication styles that don’t use connections (styles
SOCK_DGRAM and SOCK_RDM). Using these styles, you group data into packets and each packet
is an independent communication. You specify the destination for each packet individually.

Datagram packets are like letters: you send each one independently with its own desti-
nation address, and they may arrive in the wrong order or not at all.

The 1isten and accept functions are not allowed for sockets using connectionless com-
munication styles.

16.10.1 Sending Datagrams

The normal way of sending data on a datagram socket is by using the sendto function,
declared in sys/socket.h.

You can call connect on a datagram socket, but this only specifies a default destination
for further data transmission on the socket. When a socket has a default destination you can
use send (see Section 16.9.5.1 [Sending Data|, page 457) or even write (see Section 13.2
[Input and Output Primitives|, page 325) to send a packet there. You can cancel the
default destination by calling connect using an address format of AF_UNSPEC in the addr
argument. See Section 16.9.1 [Making a Connection|, page 454, for more information about
the connect function.

ssize_t sendto (int socket, const void *buffer, size_t size, int [Function]
flags, struct sockaddr *addr, socklen_t length)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

Chapter 16: Sockets 466

The sendto function transmits the data in the buffer through the socket socket to the
destination address specified by the addr and length arguments. The size argument
specifies the number of bytes to be transmitted.

The flags are interpreted the same way as for send; see Section 16.9.5.3 [Socket Data
Options]|, page 459.

The return value and error conditions are also the same as for send, but you cannot
rely on the system to detect errors and report them; the most common error is that
the packet is lost or there is no-one at the specified address to receive it, and the
operating system on your machine usually does not know this.

It is also possible for one call to sendto to report an error owing to a problem related
to a previous call.

This function is defined as a cancellation point in multi-threaded programs, so one
has to be prepared for this and make sure that allocated resources (like memory, files
descriptors, semaphores or whatever) are freed even if the thread is canceled.

16.10.2 Receiving Datagrams

The recvfrom function reads a packet from a datagram socket and also tells you where it
was sent from. This function is declared in sys/socket.h.

ssize_t recvfrom (int socket, void *buffer, size_t size, int flags, [Function]
struct sockaddr *addr, socklen_t *length-ptr)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

The recvfrom function reads one packet from the socket socket into the buffer buffer.
The size argument specifies the maximum number of bytes to be read.

If the packet is longer than size bytes, then you get the first size bytes of the packet
and the rest of the packet is lost. There’s no way to read the rest of the packet. Thus,
when you use a packet protocol, you must always know how long a packet to expect.

The addr and length-ptr arguments are used to return the address where the packet
came from. See Section 16.3 [Socket Addresses|, page 429. For a socket in the local
domain the address information won’t be meaningful, since you can’t read the address
of such a socket (see Section 16.5 [The Local Namespace], page 433). You can specify
a null pointer as the addr argument if you are not interested in this information.

The flags are interpreted the same way as for recv (see Section 16.9.5.3 [Socket Data
Options|, page 459). The return value and error conditions are also the same as for
recv.

This function is defined as a cancellation point in multi-threaded programs, so one
has to be prepared for this and make sure that allocated resources (like memory, files
descriptors, semaphores or whatever) are freed even if the thread is canceled.

You can use plain recv (see Section 16.9.5.2 [Receiving Data], page 458) instead of
recvfrom if you don’t need to find out who sent the packet (either because you know where
it should come from or because you treat all possible senders alike). Even read can be used
if you don’t want to specify flags (see Section 13.2 [Input and Output Primitives], page 325).

Chapter 16: Sockets 467

16.10.3 Datagram Socket Example

Here is a set of example programs that send messages over a datagram stream in the local
namespace. Both the client and server programs use the make_named_socket function that
was presented in Section 16.5.3 [Example of Local-Namespace Sockets|, page 434, to create
and name their sockets.

First, here is the server program. It sits in a loop waiting for messages to arrive, bouncing
each message back to the sender. Obviously this isn’t a particularly useful program, but it
does show the general ideas involved.

#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/un.h>

#define SERVER "/tmp/serversocket"
#define MAXMSG 512

int

main (void)

{
int sock;
char message [MAXMSG] ;
struct sockaddr_un name;
size_t size;
int nbytes;

/* Remove the filename first, it’s ok if the call fails */
unlink (SERVER);

/* Make the socket, then loop endlessly. */
sock = make_named_socket (SERVER);
while (1)
{
/* Wait for a datagram. */
size = sizeof (name);
nbytes = recvfrom (sock, message, MAXMSG, O,
(struct sockaddr *) & name, &size);
if (nbytes < 0)
{
perror ("recfrom (server)");
exit (EXIT_FAILURE);
}

/* Give a diagnostic message. */
fprintf (stderr, "Server: got message: %s\n", message);

/* Bounce the message back to the sender. */
nbytes = sendto (sock, message, nbytes, O,
(struct sockaddr *) & name, size);
if (nbytes < 0)
{
perror ("sendto (server)");
exit (EXIT_FAILURE);
}

Chapter 16: Sockets 468

}

16.10.4 Example of Reading Datagrams

Here is the client program corresponding to the server above.

It sends a datagram to the server and then waits for a reply. Notice that the socket for
the client (as well as for the server) in this example has to be given a name. This is so
that the server can direct a message back to the client. Since the socket has no associated
connection state, the only way the server can do this is by referencing the name of the
client.

#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/un.h>

#define SERVER "/tmp/serversocket"

#define CLIENT "/tmp/mysocket"

#define MAXMSG 512

#define MESSAGE "Yow!!! Are we having fun yet?!?"

int
main (void)
{
extern int make_named_socket (const char *name);
int sock;
char message [MAXMSG] ;
struct sockaddr_un name;
size_t size;
int nbytes;

/* Make the socket. */
sock = make_named_socket (CLIENT);

/* Initialize the server socket address. */

name.sun_family = AF_LOCAL;

strcpy (name.sun_path, SERVER);

size = strlen (name.sun_path) + sizeof (name.sun_family);

/* Send the datagram. */
nbytes = sendto (sock, MESSAGE, strlen (MESSAGE) + 1, O,
(struct sockaddr *) & name, size);
if (nbytes < 0)
{
perror ("sendto (client)");
exit (EXIT_FAILURE);
}

/* Wait for a reply. */
nbytes = recvfrom (sock, message, MAXMSG, O, NULL, 0);
if (nbytes < 0)
{
perror ("recfrom (client)");
exit (EXIT_FAILURE);
}

Chapter 16: Sockets 469

/* Print a diagnostic message. */
fprintf (stderr, "Client: got message: %s\n", message);

/* Clean up. */
remove (CLIENT);
close (sock);

}

Keep in mind that datagram socket communications are unreliable. In this example, the
client program waits indefinitely if the message never reaches the server or if the server’s
response never comes back. It’s up to the user running the program to kill and restart it
if desired. A more automatic solution could be to use select (see Section 13.8 [Waiting
for Input or Output], page 341) to establish a timeout period for the reply, and in case of
timeout either re-send the message or shut down the socket and exit.

16.11 The inetd Daemon

We've explained above how to write a server program that does its own listening. Such a
server must already be running in order for anyone to connect to it.

Another way to provide a service on an Internet port is to let the daemon program inetd
do the listening. inetd is a program that runs all the time and waits (using select) for
messages on a specified set of ports. When it receives a message, it accepts the connection (if
the socket style calls for connections) and then forks a child process to run the corresponding
server program. You specify the ports and their programs in the file /etc/inetd.conf.

16.11.1 inetd Servers

Writing a server program to be run by inetd is very simple. Each time someone requests
a connection to the appropriate port, a new server process starts. The connection already
exists at this time; the socket is available as the standard input descriptor and as the
standard output descriptor (descriptors 0 and 1) in the server process. Thus the server
program can begin reading and writing data right away. Often the program needs only the
ordinary 1/0 facilities; in fact, a general-purpose filter program that knows nothing about
sockets can work as a byte stream server run by inetd.

You can also use inetd for servers that use connectionless communication styles. For
these servers, inetd does not try to accept a connection since no connection is possible. It
just starts the server program, which can read the incoming datagram packet from descriptor
0. The server program can handle one request and then exit, or you can choose to write it
to keep reading more requests until no more arrive, and then exit. You must specify which
of these two techniques the server uses when you configure inetd.

16.11.2 Configuring inetd

The file /etc/inetd. conf tells inetd which ports to listen to and what server programs to
run for them. Normally each entry in the file is one line, but you can split it onto multiple
lines provided all but the first line of the entry start with whitespace. Lines that start with
‘#’ are comments.

Here are two standard entries in /etc/inetd. conf:

ftp stream tcp nowait root /libexec/ftpd ftpd
talk dgram udp wait root /libexec/talkd talkd

Chapter 16: Sockets 470

An entry has this format:

service style protocol wait username program arguments

The service field says which service this program provides. It should be the name of a
service defined in /etc/services. inetd uses service to decide which port to listen on for
this entry.

The fields style and protocol specify the communication style and the protocol to use
for the listening socket. The style should be the name of a communication style, converted
to lower case and with ‘SOCK_’ deleted—for example, ‘stream’ or ‘dgram’. protocol should
be one of the protocols listed in /etc/protocols. The typical protocol names are ‘tcp’ for
byte stream connections and ‘udp’ for unreliable datagrams.

The wait field should be either ‘wait’ or ‘nowait’. Use ‘wait’ if style is a connectionless
style and the server, once started, handles multiple requests as they come in. Use ‘nowait’
if inetd should start a new process for each message or request that comes in. If style uses
connections, then wait must be ‘nowait’.

user is the user name that the server should run as. inetd runs as root, so it can set
the user ID of its children arbitrarily. It’s best to avoid using ‘root’ for user if you can; but
some servers, such as Telnet and FTP, read a username and password themselves. These
servers need to be root initially so they can log in as commanded by the data coming over
the network.

program together with arguments specifies the command to run to start the server.
program should be an absolute file name specifying the executable file to run. arguments
consists of any number of whitespace-separated words, which become the command-line
arguments of program. The first word in arguments is argument zero, which should by
convention be the program name itself (sans directories).

If you edit /etc/inetd.conf, you can tell inetd to reread the file and obey its new

contents by sending the inetd process the SIGHUP signal. You’ll have to use ps to determine
the process ID of the inetd process as it is not fixed.

16.12 Socket Options

This section describes how to read or set various options that modify the behavior of sockets
and their underlying communications protocols.

When you are manipulating a socket option, you must specify which level the option
pertains to. This describes whether the option applies to the socket interface, or to a
lower-level communications protocol interface.

16.12.1 Socket Option Functions

Here are the functions for examining and modifying socket options. They are declared in
sys/socket.h.

int getsockopt (int socket, int level, int optname, void *optval, [Function]
socklen_t *optlen-ptr)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

The getsockopt function gets information about the value of option optname at level
level for socket socket.

Chapter 16: Sockets 471

The option value is stored in a buffer that optval points to. Before the call, you should
supply in *optlen-ptr the size of this buffer; on return, it contains the number of
bytes of information actually stored in the buffer.

Most options interpret the optval buffer as a single int value.

The actual return value of getsockopt is 0 on success and -1 on failure. The following
errno error conditions are defined:

EBADF The socket argument is not a valid file descriptor.
ENOTSOCK The descriptor socket is not a socket.

ENOPROTOOPT
The optname doesn’t make sense for the given level.

int setsockopt (int socket, int level, int optname, const void [Function]
*optval, socklen_t optlen)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

This function is used to set the socket option optname at level level for socket socket.
The value of the option is passed in the buffer optval of size optlen.

The return value and error codes for setsockopt are the same as for getsockopt.

16.12.2 Socket-Level Options

int SOL_SOCKET [Constant]
Use this constant as the level argument to getsockopt or setsockopt to manipulate
the socket-level options described in this section.

Here is a table of socket-level option names; all are defined in the header file sys/socket.h.

SO_DEBUG

This option toggles recording of debugging information in the underlying pro-
tocol modules. The value has type int; a nonzero value means “yes”.

SO_REUSEADDR

This option controls whether bind (see Section 16.3.2 [Setting the Address of a
Socket], page 431) should permit reuse of local addresses for this socket. If you
enable this option, you can actually have two sockets with the same Internet
port number; but the system won’t allow you to use the two identically-named
sockets in a way that would confuse the Internet. The reason for this option is
that some higher-level Internet protocols, including FTP, require you to keep
reusing the same port number.

The value has type int; a nonzero value means “yes”.

SO_KEEPALIVE
This option controls whether the underlying protocol should periodically trans-
mit messages on a connected socket. If the peer fails to respond to these mes-
sages, the connection is considered broken. The value has type int; a nonzero
value means “yes”.

Chapter 16: Sockets 472

SO_DONTROUTE

SO_LINGER

This option controls whether outgoing messages bypass the normal message
routing facilities. If set, messages are sent directly to the network interface
instead. The value has type int; a nonzero value means “yes”.

This option specifies what should happen when the socket of a type that
promises reliable delivery still has untransmitted messages when it is closed;
see Section 16.8.2 [Closing a Socket], page 452. The value has type struct
linger.

struct linger [Data Type]
This structure type has the following members:

int 1_onoff
This field is interpreted as a boolean. If nonzero, close
blocks until the data are transmitted or the timeout period
has expired.

int 1_linger
This specifies the timeout period, in seconds.

SO_BROADCAST

This option controls whether datagrams may be broadcast from the socket. The
value has type int; a nonzero value means “yes”.

SO_OOBINLINE

SO_SNDBUF

SO_RCVBUF

SO_STYLE
SO_TYPE

SO_ERROR

If this option is set, out-of-band data received on the socket is placed in the
normal input queue. This permits it to be read using read or recv without
specifying the MSG_00B flag. See Section 16.9.8 [Out-of-Band Datal, page 462.
The value has type int; a nonzero value means “yes”.

This option gets or sets the size of the output buffer. The value is a size_t,
which is the size in bytes.

This option gets or sets the size of the input buffer. The value is a size_t,
which is the size in bytes.

This option can be used with getsockopt only. It is used to get the socket’s
communication style. SO_TYPE is the historical name, and SO_STYLE is the
preferred name in GNU. The value has type int and its value designates a
communication style; see Section 16.2 [Communication Styles|, page 428.

This option can be used with getsockopt only. It is used to reset the error
status of the socket. The value is an int, which represents the previous error
status.

Chapter 16: Sockets 473

16.13 Networks Database

Many systems come with a database that records a list of networks known to the system
developer. This is usually kept either in the file /etc/networks or in an equivalent from
a name server. This data base is useful for routing programs such as route, but it is not
useful for programs that simply communicate over the network. We provide functions to
access this database, which are declared in netdb.h.

struct netent [Data Type]
This data type is used to represent information about entries in the networks database.
It has the following members:

char *n_name
This is the “official” name of the network.

char **n_aliases
These are alternative names for the network, represented as a vector of
strings. A null pointer terminates the array.

int n_addrtype
This is the type of the network number; this is always equal to AF_INET
for Internet networks.

unsigned long int n_net
This is the network number. Network numbers are returned in host byte
order; see Section 16.6.5 [Byte Order Conversion|, page 447.

Use the getnetbyname or getnetbyaddr functions to search the networks database for
information about a specific network. The information is returned in a statically-allocated
structure; you must copy the information if you need to save it.

struct netent * getnetbyname (const char *name) [Function]
Preliminary: | MT-Unsafe race:netbyname env locale | AS-Unsafe dlopen plugin
heap lock | AC-Unsafe corrupt lock fd mem | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

The getnetbyname function returns information about the network named name. It
returns a null pointer if there is no such network.

struct netent * getnetbyaddr (uint32_t net, int type) [Function]
Preliminary: | MT-Unsafe race:netbyaddr locale | AS-Unsafe dlopen plugin heap
lock | AC-Unsafe corrupt lock fd mem | See Section 1.2.2.1 [POSIX Safety Concepts],
page 2.
The getnetbyaddr function returns information about the network of type type with
number net. You should specify a value of AF_INET for the type argument for Internet
networks.

getnetbyaddr returns a null pointer if there is no such network.

You can also scan the networks database using setnetent, getnetent and endnetent.
Be careful when using these functions because they are not reentrant.

